函数f(x+1)=x2-2x+1的定义域是[-2,0],则f(x)的单调递减区间是____.
科目:高中数学 来源:重庆西南师大附中2011届高三第一次月考理科数学试题 题型:044
定义在R上的函数f(x)满足:对任意实数m,n,总有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<1.
(1)试求f(0)的值;
(2)判断f(x)的单调性并证明你的结论;
(3)若不等式f[(t-2)(|x-4|-|x+4|)]>f(t2-4t+13)对t∈[4,6]恒成立,求实数x的取值范围.
查看答案和解析>>
科目:高中数学 来源:山东省潍坊市三县2012届高三上学期12月联考数学理科试题 题型:044
已知a>0,函数f(x)=ln(2-x)+ax.
(1)设曲线y=f(x)在点(1,f(1))处的切线为l,若l截圆(x+1)2+y2=2的弦长为2,求a;
(2)求函数f(x)的单调区间;
(3)求函数f(x)在[0,1]上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=,则函数f[f(x)]的定义域为( )
A.{x|x≠1} B.{x|x≠2}
C.{x|x≠1或x≠2} D.{x|x≠1且x≠2}
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=,则函数f[f(x)]的定义域为( )
A.{x|x≠1} B.{x|x≠2}
C.{x|x≠1或x≠2} D.{x|x≠1且x≠2}
查看答案和解析>>
科目:高中数学 来源:2014届山东省高一第二学期期中考试数学试卷(解析版) 题型:解答题
已知函数f(x)=cos(2x+
)+
-
+
sinx·cosx
⑴ 求函数f(x)的单调减区间; ⑵ 若xÎ[0,
],求f(x)的最值;
⑶ 若f(a)=
,2a是第一象限角,求sin2a的值.
【解析】第一问中,利用f(x)=
cos2x-
sin2x-cos2x+
sin2x=
sin2x-
cos2x=sin(2x-
)令
+2kp≤2x-
≤
+2kp,
解得
+kp≤x≤
+kp
第二问中,∵xÎ[0,
],∴2x-
Î[-
,
],
∴当2x-
=-
,即x=0时,f(x)min=-
,
当2x-
=
,
即x=
时,f(x)max=1
第三问中,(a)=sin(2a-
)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-
<2a-
<
+2kp,∴ cos(2a-
)=![]()
利用构造角得到sin2a=sin[(2a-
)+
]
解:⑴ f(x)=
cos2x-
sin2x-cos2x+
sin2x ………2分
=
sin2x-
cos2x=sin(2x-
)
……………………3分
⑴ 令
+2kp≤2x-
≤
+2kp,
解得
+kp≤x≤
+kp
……………………5分
∴ f(x)的减区间是[
+kp,
+kp](kÎZ) ……………………6分
⑵ ∵xÎ[0,
],∴2x-
Î[-
,
], ……………………7分
∴当2x-
=-
,即x=0时,f(x)min=-
, ……………………8分
当2x-
=
,
即x=
时,f(x)max=1
……………………9分
⑶ f(a)=sin(2a-
)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-
<2a-
<
+2kp,∴ cos(2a-
)=
, ……………………11分
∴ sin2a=sin[(2a-
)+
]
=sin(2a-
)·cos
+cos(2a-
)·sin
………12分
=
×
+
×
=![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com