精英家教网 > 高中数学 > 题目详情
(理)已知函数f(x)=2x-1的反函数为f-1(x),g(x)=log4(3x+1)
(1)用定义证明f-1(x)在定义域上的单调性;
(2)若f-1(x)≤g(x),求x的取值集合D;
(3)设函数H(x)=g(x)-
12
f-1(x),当x∈D时,求函数H(x)的值域.
分析:(1)求出函数f(x)的反函数f-1(x)=log2(x+1)(x>-1),利用函数的单调性的定义证明f-1(x)在(-1,+∞)上为单调增函数.
(2)f-1(x)≤g(x) 即:log2(x+1)≤log4(3x+1),即
x+1>0
3x+1>0
(x+1)2≤3x+1
,解之得0≤x≤1.
(3)H(x)=g(x)-
1
2
f-1(x)=
1
2
log2
3x+1
x+1
=
1
2
log2(3-
2
x+1
)
,由0≤x≤1,得1≤3-
2
x+1
≤2,
可得函数H(x)的值域.
解答:解:(1)函数f(x)的值域为(-1,+∞),由y=2x-1,得 x=log2(y+1),
所以f-1(x)=log2(x+1)(x>-1),任取-1<x1<x2
f-1(x1)-f-1(x2)=log2(x1+1)-log2(x2+1)=log2
x1+1
x2+1

由-1<x1<x2得0<x1+1<x2+1,因此0<
x1+1
x2+1
<1,得 log2
x1+1
x2+1
<0,
所以f-1(x1)<f-1(x2),故f-1(x)在(-1,+∞)上为单调增函数.
(2)f-1(x)≤g(x) 即:log2(x+1)≤log4(3x+1)?
x+1>0
3x+1>0
(x+1)2≤3x+1
?
x+1>0
(x+1)2≤3x+1

解之得0≤x≤1,所以D=[0,1].
(3)H(x)=g(x)-
1
2
f-1(x)=log4(3x+1)-
1
2
log2(x+1)=
1
2
log2
3x+1
x+1
=
1
2
log2(3-
2
x+1
)

由0≤x≤1,得1≤3-
2
x+1
≤2,所以0≤log2(3-
2
x+1
)≤
1
2
,因此函数H(x)的值域为[0,
1
2
].
点评:本题考查对数函数的单调性和特殊点,求一个函数的反函数H(x)的值域函数,函数单调性的证明方法,求函数的值域,是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理) 已知函数f(x)=x-ln(x+a)在x=1处取得极值.
(1)求实数a的值;
(2)若关于x的方程f(x)+2x=x2+b在[
12
,2]
上恰有两个不相等的实数根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的对称轴方程与单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=sinx+ln(1+x).
(I)求证:
1
n
<f(
1
n
)<
2
n
(n∈N+);
(II)如果对任何x≥0,都有f(x)≤ax,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=x2+bsinx-2,(b∈R),且对任意x∈R,有f(-x)=f(x).
(I)求b.
(II)已知g(x)=f(x)+2(x+1)+alnx在区间(0,1)上为单调函数,求实数a的取值范围.
(III)讨论函数h(x)=ln(1+x2)-
12
f(x)-k的零点个数?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•奉贤区二模)(理)已知函数f(x)=2x+1,x∈R.规定:给定一个实数x0,赋值x1=f(x0),若x1≤255,则继续赋值x2=f(x1) …,以此类推,若xn-1≤255,则xn=f(xn-1),否则停止赋值,如果得到xn后停止,则称赋值了n次(n∈N*).已知赋值k次后该过程停止,则x0的取值范围是(  )

查看答案和解析>>

同步练习册答案