精英家教网 > 高中数学 > 题目详情
在平面直角坐标上有一点列P1(x1,y1),P2(x2,y2)…,Pn(xn,yn)…,对一切正整数n,点Pn在函数
y=3x+的图象上,且Pn的横坐标构成以-为首项,-1为公差的等差数列{xn}.
(Ⅰ)求点Pn的坐标;
(Ⅱ)设抛物线列C1,C2,C3,…Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,n2+1),记与抛物线Cn相切于点Dn的直线的斜率为Kn,求++…+的值.
【答案】分析:(I)根据等差数列的通项公式可求得xn,进而代入直线方程求得yn,则点P的坐标可得.
(II)先设出Cn的方程,把D点代入求得a,进而对函数进行求得求得切线的斜率,即kn的表达式,进而用裂项法求得
解答:解:(1)∵


(2)∵Cn的对称轴垂直于x轴,且顶点为Pn
∴设Cn的方程为
把Dn(0,n2+1)代入上式,得a=1,
∴Cn的方程为y=x2+(2n+3)x+n2+1.
∵kn=y'|x=0=2n+3,

=
=
点评:求数列的前n项和的问题,一般先求出数列的通项公式,根据通项公式的特点,选择合适的求和方法.常见的求和方法有:公式法、倒序相加法、错位相减法、裂项相消法、分组法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标上有一点列P1(x1,y1),P2(x2,y2)…,Pn(xn,yn)…,对一切正整数n,点Pn在函数
y=3x+
13
4
的图象上,且Pn的横坐标构成以-
5
2
为首项,-1为公差的等差数列{xn}.
(Ⅰ)求点Pn的坐标;
(Ⅱ)设抛物线列C1,C2,C3,…Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,n2+1),记与抛物线Cn相切于点Dn的直线的斜率为Kn,求
1
k1k2
+
1
k2k3
+…+
1
knkn+1
的值.

查看答案和解析>>

科目:高中数学 来源:广西南宁二中2012届高三8月月考数学理科试题 题型:044

在平面直角坐标上有一点列对一切正整数n,点Pn在函数的图象上,且Pn的横坐标构成以为首项,-1为公差的等差数列{xn}.

(Ⅰ)求点Pn的坐标;

(Ⅱ)设抛物线列中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,n2+1).记与抛物线Cn相切于点Dn的直线的斜率为Kn,求的值;

(Ⅲ)设,等差数列{an}的任一项an∈S∩T,其中中的最大数,-265<a0<-125,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标上有一点列P1(x1,y1),P2(x2,y2)…,Pn(xn,yn)…,对一切正整数n,点Pn在函数
y=3x+数学公式的图象上,且Pn的横坐标构成以-数学公式为首项,-1为公差的等差数列{xn}.
(Ⅰ)求点Pn的坐标;
(Ⅱ)设抛物线列C1,C2,C3,…Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,n2+1),记与抛物线Cn相切于点Dn的直线的斜率为Kn,求数学公式+数学公式+…+数学公式的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标上有一点列P1(x1,y1),P2(x2,y2)…,Pn(xn,yn)…,对一切正整数n,点Pn在函数
y=3x+
13
4
的图象上,且Pn的横坐标构成以-
5
2
为首项,-1为公差的等差数列{xn}.
(Ⅰ)求点Pn的坐标;
(Ⅱ)设抛物线列C1,C2,C3,…Cn,…中的每一条的对称轴都垂直于x轴,抛物线Cn的顶点为Pn,且过点Dn(0,n2+1),记与抛物线Cn相切于点Dn的直线的斜率为Kn,求
1
k1k2
+
1
k2k3
+…+
1
knkn+1
的值.

查看答案和解析>>

同步练习册答案