精英家教网 > 高中数学 > 题目详情
甲、乙两班参加数学知识竞赛,每班出3人组成代表队,每人一道必答题,答对为本队得1分,答错或不答得0分,假如甲队每人答对的概率均为
2
3
,乙队3人答对的概率分别为
2
3
2
3
1
2
,且每人回答正确与否相互之间没有影响,用ξ表示甲队总得分数.
(Ⅰ)求随机变量ξ的分布列与均值E(ξ);
(Ⅱ)用A表示事件“甲、乙两队得分和为3”,B表示事件“甲队得分大于乙队得分”,求P(AB).
分析:(Ⅰ)确定ξ的可能取值,求出相应的概率,即可得到随机变量ξ的分布列与均值E(ξ);
(Ⅱ)“甲、乙两个队总得分之和等于3”和“甲队总得分大于乙队总得分”同时满足,有两种情况:“甲得(2分)乙得(1分)”和“甲得(3分)乙得0分”这两个事件互斥,分别求概率,再取和即可.
解答:解:(Ⅰ)由题意知,ξ的可能取值为0,1,2,3,且P(ξ=0)=
C
0
3
×(1-
2
3
)3
=
1
27

P(ξ=1)=
C
1
3
×
2
3
×(1-
2
3
)
2
=
2
9
,P(ξ=2)=
C
2
3
×(
2
3
)
2
×(1-
2
3
)
=
4
9
,P(ξ=3)=
C
3
3
×(
2
3
)
3
=
8
27

所以ξ的分布列为

ξ的数学期望为Eξ=0×
1
27
+1×
2
9
+2×
4
9
+3×
8
27
=2;
(Ⅱ)用C表示“甲得(2分)乙得(1分)”这一事件,用D表示“甲得(3分)乙得0分”这一事件,
所以AB=C∪D,且C,D互斥,
又P(C)=
C
2
3
×(
2
3
)
2
×(1-
2
3
)
×(
2
3
×
1
3
×
1
2
+
1
3
×
2
3
×
1
2
+
1
3
×
1
3
×
1
2
)=
10
34

P(D)=
C
3
3
×(
2
3
)
3
×
1
3
×
1
3
×
1
2
=
4
35

由互斥事件的概率公式得P(AB)=P(C)+P(D)=
10
34
+
4
35
=
34
243
点评:本题考查概率的计算,考查离散型随机变量的分布列与期望,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.
(Ⅰ)求甲、乙两人考试均合格的概率;
(Ⅱ)求甲答对试题数ξ的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

为普及高中生安全逃生知识与安全防护能力,某学校高一年级举办了高中生安全知识与安全逃生能力竞赛.该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛.先将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分数(分数段) 频数(人数) 频率
[60,70) 9 x
[70,80) y 0.38
[80,90) 16 0.32
[90,100) z s
合   计 p 1
(Ⅰ)求出上表中的x,y,z,s,p的值;
(Ⅱ)按规定,预赛成绩不低于90分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一•二班有甲、乙两名同学取得决赛资格.
①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;
②记高一•二班在决赛中进入前三名的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省高三第一次(3月)周测理科数学试卷(解析版) 题型:解答题

为普及高中生安全逃生知识与安全防护能力,某学校高一年级举办了高中生安全知识与安全逃生能力竞赛. 该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛.先将所有参赛选手参加笔试的成绩(得分均为整数,满分为分)进行统计,制成如下频率分布表.

分数(分数段)

频数(人数)

频率

[60,70)

[70,80)

[80,90)

 [90,100)

合  计

(Ⅰ)求出上表中的的值;

(Ⅱ)按规定,预赛成绩不低于分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一·二班有甲、乙两名同学取得决赛资格.

①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;

②记高一·二班在决赛中进入前三名的人数为,求的分布列和数学期望.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.
(Ⅰ)求甲、乙两人考试均合格的概率;
(Ⅱ)求甲答对试题数ξ的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省中山二中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.
(Ⅰ)求甲、乙两人考试均合格的概率;
(Ⅱ)求甲答对试题数ξ的概率分布及数学期望.

查看答案和解析>>

同步练习册答案