精英家教网 > 高中数学 > 题目详情
等比数列{an}的前n项和为Sn,已知S2,S4,S3成等差数列.
(1)求数列{an}的公比q;
(2)若a1-a3=3,问
21
8
是数列{an}的前多少项和.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由题意知2S4=S2+S3,当q=1时,8a1≠2a1+3a1,舍去.当q≠1时,2•
a1(1-q4)
1-q
=
a1(1-q2)
1-q
+
a1(1-q3)
1-q
,由此能求出数列{an}的公比.
(2)由a1-a3=3,解得a1=4,所以Sn=
8
3
[1-(-
1
2
)n]
,由此能求出
21
8
是数列{an}的前6项和.
解答: 解:(1)∵S2,S4,S3成等差数列,
∴2S4=S2+S3
当q=1时,8a1≠2a1+3a1,舍去.
当q≠1时,2•
a1(1-q4)
1-q
=
a1(1-q2)
1-q
+
a1(1-q3)
1-q

整理,得2q2-q-1=0,解得q=1(舍),或q=-
1
2

∴数列{an}的公比q=-
1
2

(2)∵a1-a3=3,∴a1-
1
4
a1
=3,解得a1=4,
∴Sn=
4[1-(-
1
2
)n]
1-(-
1
2
)
=
8
3
[1-(-
1
2
)n]

21
8
=
8
3
[1-(-
1
2
)n]
,解得n=6,
21
8
是数列{an}的前6项和.
点评:本题考查等比数列的公比的求法,考查一个数是等比数列的前几项和的判断,是中档题,解题时要认真审题,注意等比数列的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=cosωx•sinωx+
3
cos2ωx-
3
2
(0<ω≤1),且满足f(x+π)=f(x)
(Ⅰ)求y=f(x)的解析式;
(Ⅱ)求当x∈[-
π
12
12
]时,y=f(x)的取值范围;
(Ⅲ)若关于x的方程3[f(x)]2+m•f(x)-1=0在x∈[-
π
12
12
]时有三个不相等实根,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=-an-(
1
2
n-1+2(n∈N*),数列{bn}满足bn=2n•an
(1)求a1
(2)求证数列{bn}是等差数列,并求数列{an}的通项公式;
(3)设cn=log2
n
an
,数列{
2
cncn+2
}的前n项和为Tn,求满足Tn
25
21
(n∈N*)的n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

是否存在常数a,b 使得2+4+6+…+(2n)=an2+bn对一切n∈N*恒成立?若存在,求出a,b的值,并用数学归纳法证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1的棱长为1.
(1)在空间中与点A距离为
1
3
的所有点构成曲面S,曲面S将正方体ABCD-A1B1C1D1分为两部分,若设这两部分的体积分别为V1,V2(其中V1>V2),求的
V1
V2
值;
(2)在正方体表面上与点A的距离为
2
3
3
的点形成一条空间曲线,求这条曲线的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一元二次函数f(x)=ax2+bx+2.
(Ⅰ)若不等式f(x)>0的解集是{x|-
1
2
<x<
1
3
},求a,b的值;
(Ⅱ)当b=-1时,若不等式f(x)<0解集为Φ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1-a
2
x2+ax-lnx(a∈R)
(Ⅰ)当a=1时,求函数f(x)的极值;
(Ⅱ)当a≥2时,讨论函数f(x)的单调性;
(Ⅲ)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有ma+ln2>|f(x1)-f(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sinx+cosx+|sinx-cosx|的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,Sn表示其前n项和,若a3+a10=10,则S12=
 

查看答案和解析>>

同步练习册答案