精英家教网 > 高中数学 > 题目详情
12、若x∈R,n∈N+,定义Mxn=x(x+1)(x+2)…(x+n-1),例如M-55=(-5)(-4)(-3)(-2)(-1)=-120,则函数f(x)=xMx-919的奇偶性为(  )
分析:利用新定义的Mxn联想排列数的公式进行认识该函数是解决本题的关键,弄准Mxn表示n个因式的连乘积.判断奇偶性需要利用奇偶性的定义寻找f(-x)与f(x)的关系.
解答:解:f(x)=xMx-919=x (x-9)(x-8)…(x-9+19-1)=x2(x2-1)(x2-4)…(x2-81)
从而f(-x)=f(x),又因为该函数的定义域是R,故该函数是偶函数而不是奇函数.
故选A.
点评:本题是新定义型问题,考查学生对新定义函数的认识和理解能力,也可以类比学过的排列数公式理解该函数.考查学生奇偶性的判断和化归能力,属于函数性质的应用问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、若x∈R,n∈N*,定义:Mxn=x(x+1)(x+2)…(x+n-1),则函数f(x)=xMx-919的图象关于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若x∈R,n∈N*,规定:
H
n
x
=x(x+1)(x+2)…(x+n-1),例如:
H
3
-3
(-3)•(-2)•(-1)=-6,则函数f(x)=x•
H
7
x-3
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若x∈R,n∈N*,定义
E
n
x
=x(x+1)(x+2)…(x+n-1)
,如
E
4
-4
=(-4)(-3)(-2)(-1)=24
,则函数f(x)=x•
E
19
x-9
的奇偶性为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若x∈R,n∈N*,定义:
M
n
x
=x(x+1)(x+2)…(x+n-1)
,例如
M
6
-6
=(-6)×(-5)×(-4)×(-3)×(-2)×(-1)
,则函数f(x)=x
M
13
x-6
(  )

查看答案和解析>>

同步练习册答案