精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.

1)若,证明:函数必有局部对称点;

2)若函数在区间内有局部对称点,求实数的取值范围;

3)若函数上有局部对称点,求实数的取值范围.

【答案】1)证明见解析;(2;(3

【解析】

1)根据定义,由得到方程,然后根据,证明方程有解,从而证明结论;(2)问题转化为方程在区间上有解,设

得到的值域,从而得到的范围,得到的范围;(3)将问题转化为上有解,令,变为方程在区间内有解,从而得到关于的不等式组,解出的范围.

1)由

代入

得到关于的方程

其中,由于

所以恒成立,

所以函数必有局部对称点.

2在区间内有局部对称点

,得

所以问题转化为,方程在区间上有解,

于是

,则

,在上单调递减,在上单调递增,

所以

所以.

3

由于

所以

于是上有解

,则

所以方程变为在区间内有解,

需满足条件

,所以得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本题满分12分) 如图,的外接圆的半径为所在的平面,,且

1)求证:平面ADC平面BCDE

2)试问线段DE上是否存在点M,使得直线AM与平面ACD所成角的正弦值为?若存在,

确定点M的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若点P是直线2x+y+10=0上的动点,直线PA、PB分别与圆x2+y2=4相切于A、B两点,则四边形PAOB(O为坐标原点)面积的最小值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PABD

(2)求证:平面BDE平面PAC

(3)PA平面BDE时,求三棱锥EBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市10000名职业中学高三学生参加了一项综合技能测试,从中随机抽取100名学生的测试成绩,制作了以下的测试成绩(满分是184分)的频率分布直方图.

市教育局规定每个学生需要缴考试费100元.某企业根据这100000名职业中学高三学生综合技能测试成绩来招聘员工,划定的招聘录取分数线为172分,且补助已经被录取的学生每个人元的交通和餐补费.

(1)已知甲、乙两名学生的测试成绩分别为168分和170分,求技能测试成绩的中位数,并对甲、乙的成绩作出客观的评价;

(2)令表示每个学生的交费或获得交通和餐补费的代数和,把的函数来表示,并根据频率分布直方图估计的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

已知动点都在曲线为参数,是与无关的正常数)上,对应参数分别为的中点.

(1)求的轨迹的参数方程;

(2)作一个伸压变换:,求出动点点的参数方程,并判断动点的轨迹能否过点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班同学利用国庆节假期进行社会实践,在年龄段的人群中随机抽取人进行了一次生活习惯是否符合低碳观念的调查,生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数的频率分布直方图:

组别

分组

“低碳族”的人数

占本组的频率

1

120

0.6

2

195

3

100

0.5

4

0.4

5

30

0.3

6

15

0.3

(1)补全频率分布直方图,并求的值;

(2)从年龄段的“低碳族”中采用分层随机抽样的方法抽取6人,求从年龄段的“低碳族”中应抽取的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)从某厂生产的一批零件1000个中抽取20个进行研究,应采用什么抽样方法?

2)对(1)中的20个零件的直径进行测量,得到下列不完整的频率分布表:(单位:mm

分组

频数

频率

2

6

8

合计

20

1

①完成频率分布表;

②画出其频率分布直方图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 y = x3 + x2 在点 P0 处的切线平行于直线

4xy1=0,且点 P0 在第三象限,

P0的坐标;

若直线, l 也过切点P0 ,求直线l的方程.

查看答案和解析>>

同步练习册答案