精英家教网 > 高中数学 > 题目详情

抛物线的顶点在坐标原点,焦点是双曲线x2-2y2=8的一个焦点,则此抛物线的焦点到其准线的距离等于是________.


分析:先把双曲线方程整理成标准方程求得焦点坐标,则可求得抛物线的方程中的p,进而求得其准线方程,则焦点到准线的距离可求.
解答:整理双曲线方程得 =1,
∴焦点坐标为(2,0)(-2,0),
设出抛物线方程为y2=2px,
依题意可知 =-2=2
求得p=-4或4,则准线方程为x=2或x=-2
则抛物线的焦点到其准线的距离等于
故答案为:
点评:本题主要考查了圆锥曲线的共同特征、抛物线的简单性质,考查了学生对抛物线基本方程的理解和灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线的顶点在坐标原点,对称轴是坐标轴,并且经过点M(2,-2
2
)
,求该抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线的顶点在坐标原点,焦点是椭圆2x2+4y2=16的一个焦点,则此抛物线的焦点到其准线的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点在坐标原点,对称轴为x轴,且与圆x2+y2=4相交于A、B两点,|AB|=2
3
,求抛物线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线的顶点在坐标原点,对称轴为x轴,焦点在直线2x-4y+11=0上,则它的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点在坐标原点,焦点为F(1,0),点P是点F关于y轴的对称点,过点P的动直线ι交抛物线与A,B两点.
(1)若△AOB的面积为
52
,求直线ι的斜率;
(2)试问在x轴上是否存在不同于点P的一点T,使得TA,TB与x轴所在的直线所成的锐角相等,若存在求出定点T的坐标,若不存在说明理由.

查看答案和解析>>

同步练习册答案