精英家教网 > 高中数学 > 题目详情
17.a,b是不等的两正数,若$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-{b}^{n+1}}{{a}^{n}+{b}^{n}}$=2,则b的取值范围是(0,2).

分析 当a>b时,$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-{b}^{n+1}}{{a}^{n}+{b}^{n}}$=$\underset{lim}{n→∞}$$\frac{a-b•(\frac{b}{a})^n}{1+(\frac{b}{a})^n}$=a,进而求出b的范围.

解答 解:a,b是不等的两正数,且$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-{b}^{n+1}}{{a}^{n}+{b}^{n}}$=2,
须对a,b作如下讨论:
①当a>b时,$\underset{lim}{n→∞}$$(\frac{b}{a})^n$=0,则$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-{b}^{n+1}}{{a}^{n}+{b}^{n}}$=$\underset{lim}{n→∞}$$\frac{a-b•(\frac{b}{a})^n}{1+(\frac{b}{a})^n}$=a,
所以,a=2,因此,b∈(0,2),
②当a<b时,则$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-{b}^{n+1}}{{a}^{n}+{b}^{n}}$=-b=2,
而b>0,故不合题意,舍去.
综合以上讨论得,b∈(0,2),
故答案为:(0,2).

点评 本题主要考查了极限及其运算,以及应用常用极限|q|<1,$\underset{lim}{n→∞}$qn=0解题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=asinx+btanx+x2满足f(-3)=-3,则f(3)=21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求极限:$\underset{lim}{x→a}$$\frac{x}{x-a}$${∫}_{a}^{x}$f(t)dt,其中f(x)连续.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知实数列{an}满足|a1|=1,|an+1|=q|an|,n∈N+,常数q>1.对任意的n∈N+,有$\sum_{k=1}^{n+1}{|{a_k}|}≤4|{a_n}|$.设C为所有满足上述条件的数列{an}的集合.
(1)求q的值;
(2)设{an},{bn}∈C,m∈N+,且存在n0≤m,使${a_{n_0}}≠{b_{n_0}}$.证明:$\sum_{k=1}^m{|{a_k}|}≠\sum_{k=1}^m{|{b_k}|}$;
(3)设集合${A_m}=\left\{{\sum_{k=1}^m{a_k}\left|{\left\{{a_n}\right\}∈C}\right.}\right\}$,m∈N+,求Am中所有正数之和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线3x-4y+4=0与6x+my+n=0是一个面积为4π的圆的两条平行切线,则m,n的值可能为(  )
A.-8,48B.8,-36C.-8,-48D.8,6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一个几何体的三视图如图所示,则该几何体的体积等于(  )
A.8+4πB.8+2πC.8+$\frac{4}{3}$πD.8+$\frac{2}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线l∥平面α,m为平面α内任一直线,则直线l与直线m的位置关系是(  )
A.平行B.异面C.相交D.平行或异面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:
(1)在给出的坐标系中,画出关于x、y两个相关变量的散点图.
xi(月)12345
yi(千克)0.50.91.72.12.8
(2)请根据上表提供的数据,用最小二乘法求出变量y关于变量x的线性回归直线方程$\hat y=\widehatbx+\hat a$.
(3)预测饲养满12个月时,这种鱼的平均体重(单位:千克).
(参考公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{({\overline x})}^2}}}\hat$,$\hat a=\overline y-b\overline x$,$n{(\overline x)^2}=45$,$n\overline x\overline y=24$,$\sum_{i=1}^5{x_i}{y_i}=29.8$,$\sum_{i=1}^5{x_i^2}=55$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,ABCD是正方形,CC1⊥平面ABCD,且DD1∥BB1∥CC1,菱形AB1C1D1中,∠D1C1B1=α.
(1)求证:BD∥平面AB1C1D1
(2)若直线AC1与平面ABCD所成的角为θ,求证:cosθ=tan$\frac{α}{2}$.

查看答案和解析>>

同步练习册答案