精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=asinx+btanx+x2满足f(-3)=-3,则f(3)=21.

分析 构造函数g(x)=asinx+btanx,则可得函数g(x)=asinx+btanx为奇函数,再利用函数f(x)=asinx+btanx+x2,满足f(-3)=-3,即可求得f(3)的值.

解答 解:设g(x)=asinx+btanx,则函数g(x)=asinx+btanx为奇函数
∵函数f(x)=asinx+btanx+x2,满足f(-3)=-3,
即f(-3)=g(-3)+9=-3,
∴g(-3)=-12,∴g(3)=12,
∴f(3)=g(3)+9=12+9=21,
故答案为:21.

点评 本题考查函数的奇偶性,考查函数求值,解题的关键是构造函数g(x)=asinx+btanx,确定函数g(x)=asinx+btanx为奇函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.动点M与定点F(-1,0)的距离和它到定直线x=-4的距离的比是$\frac{1}{2}$,则点M的轨迹方程是$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若f(x)=$\frac{1}{2}$x+alnx在(0,+∞)内是增函数.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在正方体ABCD-A1B1C1D1中,E、F分别是棱AB,BC的中点,O是底面ABCD的中心,求证EF⊥平面BB1O.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在直三棱柱ABC-A1B1C1中,AC=BC=2,AB=2$\sqrt{3}$,AA1=2,点D是AB的中点.
(Ⅰ)求证:CD⊥A1ABB1
(Ⅱ)求证:AC1∥平面CDB1
(Ⅲ)求异面直线AC1与B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.集合A={α|α=$\frac{nπ}{2}$,n∈Z}∪{α|α=2nπ±$\frac{2π}{3}$,n∈Z},B={β|β=$\frac{2}{3}$nπ,n∈Z}∪{β|β=nπ+$\frac{π}{2}$,n∈Z},求A与B的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点A(-1,0),B(1,0),C(0,2).
(1)求过点A且与B,C两点距离相等的直线l的方程;
(2)设点D(m,n),当四边形ABCD为直角梯形时,求m和n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$=(3,m),$\overrightarrow{b}$=(m-1,2),
(1)若(2$\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{a}$,求m的值;
(2)若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.a,b是不等的两正数,若$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-{b}^{n+1}}{{a}^{n}+{b}^{n}}$=2,则b的取值范围是(0,2).

查看答案和解析>>

同步练习册答案