精英家教网 > 高中数学 > 题目详情
15.在等差数列{an}中,a2+a8=10,则a5=(  )
A.10B.5C.8D.6

分析 根据题意和等差数列的性质求出a5的值.

解答 解:根据等差数列的性质得,a2+a8=2a5=10,
则a5=5,
故选:B.

点评 本题考查等差数列的性质的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.解关于x的不等式$\frac{a-x}{{{x^2}-x-2}}$>0(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知变量x,y满足约束条件$\left\{\begin{array}{l}x+y≥2\\ x-y≤2\\ 0≤y≤3\end{array}\right.$则目标函数y+2x的最小值为1,若目标函数z=y-ax仅在点(5,3)处取得最小值,则实数a的取值范围为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合U={1,2,3,4,5},M={1,2,3},N={2,5},则M∩(∁UN)等于(  )
A.{2}B.{2,3}C.{3}D.{1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合A={x|-2≤x≤5},B={x|m+1<x<2m-1,m∈R},若∁R(A∩B)=R,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设f0(x)=cosx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(n∈N),则 f2012(x)=cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在平行四边形ABCD中,已知AB=3,AD=4,$\overrightarrow{CP}$=2$\overrightarrow{PD}$,$\overrightarrow{AP}$•$\overrightarrow{BP}$=12,则$\overrightarrow{AB}$•$\overrightarrow{AD}$的值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知幂函数f(x)的图象过点(2,2$\sqrt{2}$),则f(x)的解析式为$f(x)={x^{\frac{3}{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C是$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>0),A,B为椭圆的左右顶点,点P为椭圆上异于A,B的动点,且直线PA,PB的斜率之积为-$\frac{3}{4}$.求椭圆C的方程.

查看答案和解析>>

同步练习册答案