精英家教网 > 高中数学 > 题目详情
函数f(x)=
.
cosxcos(
π
2
-x)
sinxsin(
π
2
+x)
.
的最小正周期是
 
分析:由已知中函数f(x)=
.
cosxcos(
π
2
-x)
sinxsin(
π
2
+x)
.
利用二阶行列式的对角线法则,我们结合诱导公式和倍角公式,我们易求出函数的解析式,进而求出其最小正周期.
解答:解:∵函数f(x)=
.
cosxcos(
π
2
-x)
sinxsin(
π
2
+x)
.

=cosx•sin(
π
2
+x)-sinx•cos(
π
2
-x)

=cosx•cosx-sinx•sinx
=cos2x
故T=π
故答案为:π
点评:本题考查的知识点是三角函数的周期性及其求法,其中利用二阶行列式的对角线法则,我们结合诱导公式和倍角公式,求出函数的解析式,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

①求矩阵A;
②已知矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)已知在直角坐标系xOy中,直线l的参数方程为
x=t-3
y=
3
 t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为ρ2-4ρco sθ+3=0.
①求直线l普通方程和曲线C的直角坐标方程;
②设点P是曲线C上的一个动点,求它到直线l的距离的取值范围.
(3)已知函数f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若关于x的不等式f(x)≥a2-a在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

www.ks5u.co

已知函数

   (I)当a<0时,求函数的单调区间;

   (II)若函数f(x)在[1,e]上的最小值是求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=在区间上单调递减,则实数a的取值范围是(    )

  A.                         B.                 C.                      D..Co

查看答案和解析>>

同步练习册答案