精英家教网 > 高中数学 > 题目详情

如果不等式组数学公式表示的平面区域是一个直角三角形,则该三角形的面积为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:分两种情况加以讨论:(1)直线y=2x与直线kx-y+1=0互相垂直,可得,从而得到三角形三个顶点的坐标,求出面积为;(2)直线x=0与直线kx-y+1=0互相垂直,可得k=0,从而得到三角形三个顶点的坐标,求出面积为
解答:有两种情形:
(1)直角由y=2x与kx-y+1=0形成(如图),则

∵2×k=-1,∴,y=2x与-x-y+1=0的交点坐标为(),
三角形的三个顶点为(0,0),(0,1),(),
∴该三角形的面积为S=×1×=
(2)直角由x=0与kx-y+1=0形成(如图),则k=0,

∴由x=0与-y+1=0交于点(
三角形的三个顶点为(0,0),(0,1),(),
∴该三角形的面积为S=×1×=
综上所述,三角形的面积为
故选C
点评:本题给出平面直角坐标系中两条定直线,第三条直线与它们相交围成直角三角形,求三角形的面积,着重考查了两条直线的位置关系和二元一次不等式(组)与平面区域等知识点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

函数已知sinθ=数学公式,则sin4θ的值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

△ABC中,角A,B,C所对的边分别是a,b,c,数学公式sinA=数学公式
(1)求角A的值;
(2)若a=数学公式,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设数列{an}的各项均为正数,前n项和为Sn,对于任意的n∈N+数学公式成等差数列,设数列{bn}的前n项和为Tn,且数学公式,则对任意的实数x∈(1,e](e是自然对数的底)和任意正整数n,Tn小于的最小正整数为


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2sinx(sinx+cosx)-1
(1)将函数f(x)化为Asin(ωx+?)的形式
(2)求函数f(x)的最小正周期及最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数f(x)=数学公式,无论t取何值,函数f(x)在区间(-∞,+∞)总是不单调.则a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量数学公式,函数数学公式
(1)求函数f(x)的单调递增区间;
(2)如果△ABC中,f(A)=数学公式,且角A所对的边a=2,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设函数f(x)满足f(-x)=f(x),且当x≥0时,数学公式,又函数g(x)=|xsinπx|,则函数h(x)=f(x)-g(x)在数学公式上的零点个数为


  1. A.
    3
  2. B.
    4
  3. C.
    5
  4. D.
    6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知椭圆数学公式,则椭圆的焦点坐标是________.

查看答案和解析>>

同步练习册答案