精英家教网 > 高中数学 > 题目详情
1.tan750°的值为(  )
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$-\sqrt{3}$

分析 利用诱导公式即可化简求值.

解答 解:tan750°=tan(2×360°+30°)=tan30°=$\frac{\sqrt{3}}{3}$.
故选:B.

点评 本题主要考查了诱导公式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设点A1,A2分别为椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右顶点,若在椭圆C上存在异于点A1,A2的点P,使得PO⊥PA2,其中O为坐标原点,则椭圆C的离心率的取值范围是($\frac{\sqrt{2}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在三棱锥S-ABC中,△ABC是边长为2的正三角形,平面SAC⊥平面ABC,SA=SC=SA=SC,M为AB的中点.
(Ⅰ)证明:AC⊥SB;
(Ⅱ)求点B到平面SCM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合 A={x|-2≤x≤3},B={x|x<-1},则集合A∩B=(  )
A.{x|-2≤x<4}B.{x|x≤3或x≥4}C.{x|-2≤x<-1}D.{x|-1≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.定义在R上的偶函数满足f(x+2)=f(x),且在[0,1]上单调递增,设a=f(3),$b=f(\sqrt{2})$,c=f(2),则a,b,c的大小关系是(  )
A.b>c>aB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow a=(sinωx,sin(ωx+\frac{π}{2})),\overrightarrow b=(sinωx,\sqrt{3}sinωx)$(ω>0),记f(x)=$\overrightarrow a•\overrightarrow b$.且f(x)的最小正周期为π.
(1)求f(x)的最大值及取得最大值时x的集合;
(2)求f(x)在区间$[{0,\frac{2π}{3}}]$上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.有一个容量为100的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为(  )
A.18B.36C.54D.72

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}满足a1=3,an+1-an=2n,则an=n2-n+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“x=1”是“x2-x=0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案