精英家教网 > 高中数学 > 题目详情
已知点M是椭圆=1(a>b>0)上的一点,两焦点为F1、F2,点I是△MF1F2的内心,连结MI并延长交F1F2于N,则的值为____________.

解析:取M点为短轴的端点,则,

=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆x2+y2=1与x轴正半轴的交点为F,AB为该圆的一条弦,直线AB的方程为x=m.记以AB为直径的圆为⊙C,记以点F为右焦点、短半轴长为b(b>0,b为常数)的椭圆为D.
(1)求⊙C和椭圆D的标准方程;
(2)当b=1时,求证:椭圆D上任意一点都不在⊙C的内部;
(3)已知点M是椭圆D的长轴上异于顶点的任意一点,过点M且与x轴不垂直的直线交椭圆D于P、Q两点(点P在x轴上方),点P关于x轴的对称点为N,设直线QN交x轴于点L,试判断
OM
OL
是否为定值?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上一点,F1、F2分别为C的左、右焦点,|F1F2|=4,∠F1MF2=60°,△F1MF2的面积为
4
3
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)设N(0,2),过点p(-1,-2)作直线l,交椭圆C异于N的A、B两点,直线NA、NB的斜率分别为k1、k2,证明:k1+k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的一点,过M作斜率分别为k1,k2的直线,交椭圆于A,B两点,且A,B关于原点对称,则k1k2=-
b2
a2
.类比椭圆的这个性质,设M是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
上的一点,过M作斜率分别为k1,k2的直线,交双曲线于A,B两点,且A,B关于原点对称,则k1•k2=
b2
a2
b2
a2

查看答案和解析>>

科目:高中数学 来源:2010年山西省忻州市高二下学期期末联考(文科)数学卷 题型:解答题

(本题满分12分)(学选修4-4的选做题1,没学的选做题2)

题1:已知点M是椭圆C:+ =1上的任意一点,直线l:x+2y-10=0.

        (1)设x=3cosφ,φ为参数,求椭圆C的参数方程;

(2)求点M到直线l距离的最大值与最小值.

题2:函数的一个零点是1,另一个零点在(-1,0)内,(1)求的取值范围;

(2)求出的最大值或最小值,并用表示.

 

查看答案和解析>>

同步练习册答案