精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b).
(I)当a=1,b=2时,求曲线y=f(x)在点(2,f(x))处的切线方程;
(II)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2
证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后的等差数列,并求x4
分析:(1)将a,b的值代入后对函数f(x)进行求导,根据导数的几何意义即函数在某点的导数值等于该点的切线的斜率,可得答案.
(2)对函数f(x)求导,令导函数等于0解出x的值,然后根据x3是f(x)的一个零点可得到x3=b,然后根据等差数列的性质可得到答案.
解答:(Ⅰ)解:当a=1,b=2时,
因为f′(x)=(x-1)(3x-5)
故f′(2)=1
f(2)=0,
所以f(x)在点(2,0)处的切线方程为y=x-2;
(Ⅱ)证明:因为f′(x)=3(x-a)(x-
a+2b
3
),
由于a<b.
故a<
a+2b
3

所以f(x)的两个极值点为x=a,x=
a+2b
3
.不妨设x1=a,x2=
a+2b
3

因为x3≠x1,x3≠x2
且x3是f(x)的零点,故x3=b.
又因为
a+2b
3
-a=2(b-
a+2b
3
),
x4=
1
2
(a+
a+2b
3
)=
2a+b
3

所以a,
2a+b
3
a+2b
3
,b依次成等差数列,
所以存在实数x4满足题意,且x4=
2a+b
3
点评:本题主要考查函数的极值概念、导数运算法则、切线方程、导线应用、等差数列等基础知识,同时考查抽象概括、推理论证能力和创新意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案