精英家教网 > 高中数学 > 题目详情
若函数f(2x)的定义域是[-2,2],则函数y=f(x+1)的定义域是
[-5,3]
[-5,3]
分析:由函数f(2x)的定义域是[-2,2],求出函数f(x)的定义域,再由x+1在函数f(x)的定义域内求解x的取值集合得到函数y=f(x+1)的定义域.
解答:解:由函数f(2x)的定义域是[-2,2],得-2≤x≤2.
∴-4≤2x≤4,即函数f(x)的定义域是[-4,4],
再由-4≤x+1≤4,得:-5≤x≤3.
∴函数y=f(x+1)的定义域是[-5,3].
故答案为:[-5,3].
点评:本题考查了复合函数定义域的求法,给出函数f[g(x)]的定义域[a,b],求函数f(x)的定义域,就是求x∈[a,b]内的g(x)的值域;给出函数f(x)的定义域为[a,b],求f[g(x)]的定义域,只需由a≤g(x)≤b,求解x的取值集合即可,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x+
5x
的定义域为(0,+∞).设点P是函数图象上的任意一点,过点P分别作直线y=2x和y轴的垂线,垂足分别为M、N.
(1)|PM|•|PN|是否为定值?若是,求出该定值;若不是,说明理由;
(2)设点O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
bx-1
-a(a∈R,a≠0)在x=3处的切线方程为(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求证:曲线g(x)上的任意一点处的切线与直线x=0和直线y=ax围成的三角形面积为定值;
(2)若f(3)=3,是否存在实数m,k,使得f(x)+f(m-x)=k对于定义域内的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三个解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

科目:高中数学 来源:2013年辽宁省鞍山一中高考数学二模试卷(理科)(解析版) 题型:解答题

已知函数f(x)=ax+-a(a∈R,a≠0)在x=3处的切线方程为(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求证:曲线g(x)上的任意一点处的切线与直线x=0和直线y=ax围成的三角形面积为定值;
(2)若f(3)=3,是否存在实数m,k,使得f(x)+f(m-x)=k对于定义域内的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三个解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年江苏省南通市启东中学高三(下)5月月考数学试卷(解析版) 题型:解答题

已知函数f(x)=ax+-a(a∈R,a≠0)在x=3处的切线方程为(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求证:曲线g(x)上的任意一点处的切线与直线x=0和直线y=ax围成的三角形面积为定值;
(2)若f(3)=3,是否存在实数m,k,使得f(x)+f(m-x)=k对于定义域内的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三个解,求实数t的取值范围.

查看答案和解析>>

同步练习册答案