7£®2014ÄêÊÀ½ç¾­¼ÃÐÎÊÆÑϾþ£¬Ä³ÆóҵΪÁËÔöÇ¿×ÔÉí¾ºÕùÁ¦£¬¼Æ»®¶ÔÖ°¹¤½øÐм¼ÊõÅàѵ£¬ÒÔÌá¸ß²úÆ·µÄÖÊÁ¿£®ÎªÁ˽âij³µ¼ä¶Ô¼¼ÊõÅàѵµÄ̬¶ÈÓëÐÔ±ðµÄ¹ØÏµ£¬¶Ô¸Ã³µ¼äËùÓÐÖ°¹¤½øÐÐÁËÎʾíµ÷²éµÃµ½ÁËÈçϵÄ2¡Á2ÁÐÁª±í£º
Ô޳ɲ»Ô޳ɺϼÆ
ÄÐÖ°¹¤22830
Ůְ¹¤81220
ºÏ¼Æ302050
£¨1£©Ó÷ֲã³éÑùµÄ·½·¨ÔÚ²»Ô޳ɵÄÖ°¹¤Öгé5È˽øÐе÷²é£¬ÆäÖÐÄÐÖ°¹¤¡¢Å®Ö°¹¤¸÷³éÈ¡¶àÉÙÈË£¿
£¨2£©ÔÚÉÏÊö³éÈ¡µÄ5ÈËÖÐÑ¡2ÈË£¬ÇóÖÁÉÙÓÐÒ»ÃûÄÐÖ°¹¤µÄ¸ÅÂÊ£»
£¨3£©¾Ý´Ë×ÊÁÏ£¬Åж϶Լ¼ÊõÅàѵµÄ̬¶ÈÊÇ·ñÓëÐÔ±ðÓйأ¿²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
¸½£ºK2=$\frac{n£¨ad-bc£©2}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬
P£¨K2¡Ýk£©0.050.01
k3.8416.635

·ÖÎö £¨1£©¸ù¾Ý·Ö²ã³éÑùµÄ¶¨Ò彨Á¢±ÈÀý¹ØÏµ¼´¿ÉµÃµ½½áÂÛ£®
£¨2£©ÀûÓÃÁоٷ¨¼´¿ÉÇóÖÁÉÙÓÐÒ»ÃûÄÐÖ°¹¤µÄ¸ÅÂÊ£»
£¨3£©¼ÆËãK2£¬½áºÏ¶ÀÁ¢ÐÔ¼ìÑé½øÐÐÅжϣ®

½â´ð ½â£º£¨1£©ÔÚ²»Ô޳ɵÄÖ°¹¤Öгé5ÈË£¬Ôò³éÈ¡±ÈÀýΪ$\frac{5}{20}$=$\frac{1}{4}$£¬
ËùÒÔÄÐÖ°¹¤Ó¦¸Ã³éÈ¡8¡Á$\frac{1}{4}$=2£¨ÈË£©£¬Å®Ö°¹¤Ó¦¸Ã³éÈ¡12¡Á$\frac{1}{4}$=3£¨ÈË£©£®
£¨2£©ÉÏÊö³éÈ¡µÄ5ÈËÖУ¬ÄÐÖ°¹¤2È˼ÇΪa£¬b£¬Å®Ö°¹¤4È˼ÇΪc£¬d£¬e£¬Ôò´Ó5ÈËÖÐÑ¡2È˵ÄËùÓÐÇé¿öΪ£¨a£¬b£©£¬£¨a£¬c£©£¬£¨a£¬d£©£¬£¨a£¬e£©£¬£¨b£¬c£©£¬£¨b£¬d£©£¬£¨b£¬e£©£¬£¨c£¬d£©£¬£¨c£¬e£©£¬£¨d£¬e£©£¬¹²10ÖÖÇé¿ö£®
»ùÖÐÖÁÉÙÓÐÒ»ÃûÄÐÖ°¹¤µÄÇé¿öÓУ¨a£¬b£©£¬£¨a£¬c£©£¬£¨a£¬d£©£¬£¨a£¬e£©£¬£¨b£¬c£©£¬£¨b£¬d£©£¬£¨b£¬e£©£¬¹²7ÖÖÇé¿ö£®
¹Ê´ÓÉÏÊö³éÈ¡µÄ5ÈËÖÐÑ¡2ÈË£¬ÖÁÉÙÓÐÒ»ÃûÄÐÖ°¹¤µÄ¸ÅÂÊΪP=$\frac{7}{10}$£®
£¨3£©ÒòΪK2=$\frac{50¡Á£¨22¡Á12-8¡Á8£©2}{30¡Á20¡Á30¡Á20}$¡Ö5.56¡Ê£¨3.841£¬6.635£©£¬
ËùÒÔÓÐ95%µÄ°ÑÎÕÈÏΪ¡°¶Ô¼¼ÊõÅàѵµÄ̬¶ÈÓëÐÔ±ðÓйء±£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é×ۺϿ¼²é¶ÀÁ¢ÐÔ¼ìÑ飬·Ö²ã³éÑùÒÔ¼°¸ÅÂʵÄÇó½â£¬¿¼²éѧÉúµÄÔËËãºÍÍÆÀíÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªÔ²x2+y2=4£¬Ö±Ïßl£ºy=x+b£¬Ô²ÉÏÖÁÉÙÓÐÈý¸öµãµ½Ö±ÏßlµÄ¾àÀë¶¼ÊÇ1£¬ÔòbµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[-$\sqrt{2}$£¬$\sqrt{2}$]B£®{-$\sqrt{2}$£¬$\sqrt{2}$}C£®£¨-$\sqrt{2}$£¬$\sqrt{2}$£©D£®[0£¬$\sqrt{2}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðΪ½ÇA£¬B£¬CËù¶ÔµÄ±ß£¬Èô£¨a+b£©2-c2=4£¬ÇÒC=60¡ã£¬ÔòabµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{4}{3}$B£®1+$\sqrt{3}$C£®1D£®$\frac{1+\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ABCDΪֱ½ÇÌÝÐΣ¬¡ÏC=¡ÏCDA=90¡ã£¬AD=2BC=2CD=2£¬PÎªÆ½ÃæABCDÍâÒ»µã£¬ÇÒPB¡ÍBD£®
£¨1£©ÇóÖ¤£ºPA¡ÍBD£»
£¨2£©ÈôÖ±Ïßl¹ýµãP£¬ÇÒÖ±Ïßl¡ÎÖ±ÏßBC£¬ÊÔÔÚÖ±ÏßlÉÏÕÒÒ»µãE£¬Ê¹µÃÖ±ÏßPC¡ÎÆ½ÃæEBD£»
£¨3£©ÈôPC¡ÍCD£¬PB=4£¬ÇóËÄÀâ×¶P-ABCDµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®É輯ºÏA={x|x=¦Ð+$\frac{2k¦Ð}{3}$£¬k¡Êz}£¬B={x|x=k¦Ð+$\frac{¦Ð}{3}$£¬k¡Êz}£¬C={x|x=k¦Ð+$\frac{2¦Ð}{3}$£¬k¡Êz}£¬ÔòA¡É£¨B¡ÈC£©=£¨¡¡¡¡£©
A£®$\left\{{x|x=k¦Ð+\frac{¦Ð}{3}£¬k¡Êz}\right\}$B£®$\left\{{x|x=k¦Ð-\frac{¦Ð}{3}£¬k¡Êz}\right\}$C£®$\left\{{x|x=2k¦Ð¡À\frac{¦Ð}{3}£¬k¡Êz}\right\}$D£®$\left\{{x|x=k¦Ð¡À\frac{¦Ð}{3}£¬k¡Êz}\right\}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=ax3+bx2£¬ÔÚx=1ʱÓм«´óÖµ3£»
£¨¢ñ£©Çóa£¬bµÄÖµ£»
£¨¢ò£©Çóº¯Êýf£¨x£©ÔÚ[-1£¬2]ÉϵÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®¼ÆËãÊÇ»ý·Ö${¡Ò}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx=¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖª£¨a+1£©x-1-lnx¡Ü0¶ÔÓÚÈÎÒâ$x¡Ê[{\frac{1}{2}£¬2}]$ºã³ÉÁ¢£¬ÔòaµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®0B£®1C£®1-2ln2D£®$\frac{-1+ln2}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÊýÁÐ{an}ÖУ¬a1=-$\frac{2}{3}$£¬µ±n£¾1£¬n¡ÊN*ʱ£¬Sn+$\frac{1}{{S}_{n}}$=an-2
£¨1£©ÇóS1£¬S2£¬S3µÄÖµ£»
£¨2£©²ÂÏëSnµÄ±í´ïʽ£¬²¢Ö¤Ã÷ÄãµÄ²ÂÏ룮

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸