精英家教网 > 高中数学 > 题目详情
14.在半径为2的球O内任取一点P,则|OP|>1的概率为(  )
A.$\frac{7}{8}$B.$\frac{5}{6}$C.$\frac{3}{4}$D.$\frac{1}{2}$

分析 由题意,本题是几何概型的考查,只要求出球的体积以及满足条件的体积,利用体积比求概率.

解答 解:由题意,球的条件为$\frac{4}{3}π×{2}^{3}=\frac{32}{3}π$,球O内任取一点P,则|OP|>1的是大球内与半径为1与大球同球心的小球外的部分,体积为$\frac{32π}{3}-\frac{4}{3}π=\frac{28π}{3}$,
由几何概型的公式得到|OP|>1的概率为:$\frac{\frac{28π}{3}}{\frac{32π}{3}}=\frac{7}{8}$;
故选:A.

点评 本题考查了几何概型概率的求法;关键是明确概率模型以及几何概型的事件测度的选择.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知正数组成的等比数列{an},若a1•a20=100,那么a7+a14的最小值为(  )
A.20B.25C.50D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算:
(1)${∫}_{-4}^{3}$|x+2|dx;   
(2)${∫}_{0}^{1}$$\sqrt{4-{x}^{2}}$dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{lnx+k}{e^x}$(k为常数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(1)求k的值;
(2)求y=f(x)的单调区间;
(3)设g(x)=xf′(x),证明:当x>0时,g(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,cosA=$\sqrt{3}$sinA,则A=30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,内角A、B、C所对的边分别是a、b、c,若sinC+sin(B-A)=sin2A,则△ABC的形状为等腰或直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{(a-3)x+5,x≤1}\\{\frac{2a}{x},x>1}\end{array}\right.$在(-∞,+∞)上是减函数,那么实数a的取值范围是(  )
A.(0,3)B.(0,3]C.(0,2)D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某学校组织的“学校为我,我为学校”的演讲比赛中,共有10名学生参加演讲,若他们分到7个班级,每个班级至少一名名额,那么不同的分配方案有84.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=$\frac{4}{5}$,b=6,
(1)当a=5时,求角A;
(2)当△ABC的面积为27时,求a+c的值.

查看答案和解析>>

同步练习册答案