精英家教网 > 高中数学 > 题目详情
19.在△ABC中,内角A、B、C所对的边分别是a、b、c,若sinC+sin(B-A)=sin2A,则△ABC的形状为等腰或直角三角形.

分析 由两角和与差的三角函数公式结合三角形的知识可得cosA=0或sinA=sinB.进而可作出判断.

解答 解:∵sinC+sin(B-A)=sin2A,
∴sin(A+B)+sin(B-A)=sin2A.
∴sinAcosB+cosAsinB+sinBcosA-cosBsinA=2sinAcosA
∴2sinBcosA=2sinAcosA.
∴cosA(sinA-sinB)=0,
∴cosA=0或sinA=sinB.
∵0<A,B<π,∴A=$\frac{π}{2}$或A=B.
∴△ABC为直角三角形或等腰三角形.
故答案为:等腰或直角三角形

点评 本题考查三角形形状的判断,涉及两角和与差的三角函数公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如图,AB=2,O为圆心,C为半圆上不同于A,B的任意一点,若P为半径OC上的动点,则($\overrightarrow{PA}$+$\overrightarrow{PB}$)•$\overrightarrow{PC}$的最小值等于(  )
A.-$\frac{1}{2}$B.-2C.-1D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m<0,m与n的关系表达式n=3m+6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2sinx+2sin(x-$\frac{π}{3}$)
(1)求f(x)的单调递增区间;
(2)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知f(A)=$\sqrt{3}$,a=$\sqrt{3}$b,证明:C=3B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在半径为2的球O内任取一点P,则|OP|>1的概率为(  )
A.$\frac{7}{8}$B.$\frac{5}{6}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设a>b>0,m=$\sqrt{a-b}$,n=$\sqrt{a}$-$\sqrt{b}$,则m,n的大小关系是m>n.(选>,=,<)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一点到两焦点F1,F2的距离之积是m,则m取最大值时,点P的坐标为(  )
A.($\frac{5}{2}$,$\frac{3\sqrt{3}}{2}$)或($\frac{5}{2}$,-$\frac{3\sqrt{3}}{2}$)B.(5,0)或(-5,0)
C.($\frac{5\sqrt{3}}{2}$,$\frac{3}{2}$)或(-$\frac{5\sqrt{3}}{2}$,-$\frac{3}{2}$)D.(0,3)或(0,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知四个数101 010(2)、111(5)、32(8)、54(6),其中最小的是32(8)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.过点M(1,2)的直线l与圆C:(x-3)2+(y-4)2=25交于A,B两点,则|AB|的最小值是2$\sqrt{17}$.

查看答案和解析>>

同步练习册答案