精英家教网 > 高中数学 > 题目详情
10.已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m<0,m与n的关系表达式n=3m+6.

分析 由x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,求导,则f′(1)=0,求得m与n的关系表达式.

解答 解:f′(x)=3mx2-6(m+1)x+n,
因为x=1是f(x)的一个极值点,
所以f′(1)=0,即3m-6(m+1)+n=0,
所以n=3m+6,
故答案为:n=3m+6.

点评 考查利用导数研究函数的单调区间和极值问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.复数z=a+bi(a,b∈R,i是虚数单位)在复平面内对应点为Z,设r=|$\overline{OZ}$|,θ是以x轴的非负半轴为始边,以OZ所在的射线为终边的角,则z=a+bi=r(cosθ+isinθ),把r(cosθ+isinθ)叫做复数a+bi的三角形式.
(1)用数学归纳法证明:[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ)(n∈N*);
(2)利用等式(1+i)100=[$\sqrt{2}$(cos$\frac{π}{4}$+isin$\frac{π}{4}$)]100,求C${\;}_{100}^{0}$-C${\;}_{100}^{2}$+C${\;}_{100}^{4}$-C${\;}_{100}^{6}$+…-C${\;}_{100}^{98}$+C${\;}_{100}^{100}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.不论m取何值,直线mx-y+2m+1=0恒过定点(  )
A.$(1,\frac{1}{2})$B.(-2,1)C.(2,-1)D.$(-1,-\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若向量$\overrightarrow{AB}$=(-2,-3),$\overrightarrow{AC}$=(-4,-7),则$\overrightarrow{BC}$=(  )
A.(-2,-4)B.(2,4)C.(6,10)D.(-6,-10)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算:
(1)${∫}_{-4}^{3}$|x+2|dx;   
(2)${∫}_{0}^{1}$$\sqrt{4-{x}^{2}}$dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}满足:a1=1,an+1=2an+1(n∈N*
(1)求数列{an}的通项公式;
(2)若数列{bn}满足4b1-1•4b2-1•4b3-1…4bn-1=(an+1)bn,证明:{bn}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{lnx+k}{e^x}$(k为常数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(1)求k的值;
(2)求y=f(x)的单调区间;
(3)设g(x)=xf′(x),证明:当x>0时,g(x)<1+e-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,内角A、B、C所对的边分别是a、b、c,若sinC+sin(B-A)=sin2A,则△ABC的形状为等腰或直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)的定义域为R,f′(x)>2恒成立,f(-1)=2,则f(x)>2x+4解集为(-1,+∞).

查看答案和解析>>

同步练习册答案