精英家教网 > 高中数学 > 题目详情
1.不论m取何值,直线mx-y+2m+1=0恒过定点(  )
A.$(1,\frac{1}{2})$B.(-2,1)C.(2,-1)D.$(-1,-\frac{1}{2})$

分析 把直线方程中参数m分离出来,再利用m(ax+by+c)+(a′x+b′y+c′)=0 经过直线ax+by+c=0和直线a′x+b′y+c′=0的交点,可得定点的坐标.

解答 解:直线mx-y+2m+1=0,即 m(x+2)-y+1=0,令x+2=0,可得x=-2,y=1,
故直线mx-y+2m+1=0恒过定点(-2,1),
故选:B.

点评 本题主要考查直线过定点问题,利用了m(ax+by+c)+(a′x+b′y+c′)=0 经过直线ax+by+c=0和直线a′x+b′y+c′=0的交点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数f(cosx)=cos2x,则f(sin15°)=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知三角形的三个角A,B,C成等差数列,则sinB=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,AB=2,O为圆心,C为半圆上不同于A,B的任意一点,若P为半径OC上的动点,则($\overrightarrow{PA}$+$\overrightarrow{PB}$)•$\overrightarrow{PC}$的最小值等于(  )
A.-$\frac{1}{2}$B.-2C.-1D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A(1,1,1)、B(2,2,2)、C(3,2,4),求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知tanα=4,则$\frac{{1+cos2α+8{{sin}^2}α}}{sin2α}$的值为(  )
A.18B.$\frac{1}{4}$C.16D.$\frac{65}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知实数x,y满足3x+4y-10=0,则$\sqrt{(x-1)^{2}+(y+2)^{2}}$的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m<0,m与n的关系表达式n=3m+6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一点到两焦点F1,F2的距离之积是m,则m取最大值时,点P的坐标为(  )
A.($\frac{5}{2}$,$\frac{3\sqrt{3}}{2}$)或($\frac{5}{2}$,-$\frac{3\sqrt{3}}{2}$)B.(5,0)或(-5,0)
C.($\frac{5\sqrt{3}}{2}$,$\frac{3}{2}$)或(-$\frac{5\sqrt{3}}{2}$,-$\frac{3}{2}$)D.(0,3)或(0,-3)

查看答案和解析>>

同步练习册答案