精英家教网 > 高中数学 > 题目详情
定义在上的函数满足且当递增, 若的值是          (      )                                        
A.恒为正数B.恒为负数C.等于0D.正、负都有可能
A

试题分析:利用已知等式得到f(x)关于(1,0)对称,由知两数一个大于1一个小于1,且大于1的离对称中心远,利用单调性得到函数值的大小.
,∴f(x)关于(1,0)对称
∵当x<1时f(x)递增∴f(x)在R上递增
,,∴离(1,0)远
>0
故选A
点评:本题考查抽象函数的性质、利用函数的单调性判断函数值的正负.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)某企业拟投资两个项目,预计投资项目万元可获得利润
万元;投资项目万元可获得利润万元.若该企业用40
万元来投资这两个项目,则分别投资多少万元能获得最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)南昌市在加大城市化进程中,环境污染问题也日益突出。据环保局测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比.现已知相距18的A,B两家工厂(视作污染源)的污染强度分别为,它们连线上任意一点C处的污染指数等于两家工厂对该处的污染指数之和.设).
(1) 试将表示为的函数;
(2) 若,且时,取得最小值,试求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某人从2009年起,每年1月1日到银行新存入元(一年定期),若年利率为保持不变,且每年到期存款和利息自动转为新的一年定期,到2012年底将所有存款及利息全部取回,则可取回的钱数(元)为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,.
(Ⅰ)若上为单调函数,求m的取值范围;
(Ⅱ)设,若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,满足的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 
(1)解关于x的不等式f(x)<0;
(2)当=-2时,不等式f(x)>ax-5在上恒成立,求实数a的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设函数,且不等式的解集为
(1)求的值;
(2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则使函数g(x)=f(x)+x-m有零点的实数m的取值范围是
A.B.C.D.

查看答案和解析>>

同步练习册答案