精英家教网 > 高中数学 > 题目详情

如图,Rt△ABC中,∠C=90°,其内切圆切AC边于D点,O为圆心.若数学公式,则数学公式=________.

-3
分析:以CA所在的直线为x轴,以CB所在的直线为y轴,建立平面直角坐标系,利用条件以及圆的切线性质求得A、B、C、O的坐标,再利用两个向量的数量积公式求得 的值.
解答:以CA所在的直线为x轴,以CB所在的直线为y轴,建立平面直角坐标系,则C(0,0)、O(1,1)、A(3,0).
设直角三角形内切圆与AB边交与点E,与CB边交于点F,则由圆的切线性质性质可得BE=BF,设BE=BF=m,
则有勾股定理可得CB2+CA2=AB2,即 (x+1)2+9=(x+2)2,解得 x=3,故B(0,4).
=(1,-3)(-3,0)=-3-0=-3,
故答案为-3.
点评:本题主要考查两个向量的数量积公式的应用,两个向量坐标形式的运算,圆的切线性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ABC=90°,BA=BC=2,分别过A、C作平面ABC的垂线AA′和CC′,AA′=h1,CC′=h2,且h1>h2,连接A′C和AC′交于点P.
(I)设点M为BC中点,求证:直线PM与平面A′AB不平行;
(II)设O为AC中点,若h1=2,二面角A-A′C′-B等于45°,求直线OP与平面A′BP所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湛江二模)如图,Rt△ABC中,∠C=90°,∠A=30°,圆O经过B、C且与AB、AC分别相交于D、E.若AE=EC=2
3
,则圆O的半径r=
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在Rt△ABC中,三个顶点坐标分别为A(-1,0),B(1,0),C(-1,
2
2
)
,曲线E过C点且曲线E上任一点P满足|PA|+|PB|是定值.
(Ⅰ)求出曲线E的标准方程;
(Ⅱ)设曲线E与x轴,y轴的交点分别为D、Q,是否存在斜率为k的直线l过定点(0,
2
)
与曲线E交于不同的两点M、N,且向量
OM
+
ON
DQ
共线.若存在,求出此直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,其内切圆切AC与D点,O为圆心.若|
AD
|=2|
CD
|=2,则
BO
AC
=
-3
-3

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,Rt△ABC中,C=90°,A=30°,圆O经过B、C且与AB、AC相交于D、E.若AE=EC=2
3
,则AD=
 
,圆O的半径r=
 

查看答案和解析>>

同步练习册答案