18£®ÒÑÖªÖ±Ïßl£º$\left\{\begin{array}{l}{x=1+cos60¡ãt}\\{y=sin60¡ãt}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßC£º$\left\{\begin{array}{l}{x=cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®
£¨1£©·Ö±ð½«Ö±ÏßlºÍÇúÏßCµÄ²ÎÊý·½³Ìת»¯ÎªÆÕͨ·½³Ì£»
£¨2£©ÇóÓëÖ±ÏßlƽÐÐÇÒÓëÇúÏßCÏàÇеÄÖ±Ïßl1µÄ·½³Ì£®

·ÖÎö £¨1£©¸ù¾ÝÖ±Ïß²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒåµÃ³öÖ±ÏßµÄÇãб½ÇºÍ¶¨µã£¬Ð´³öµãбʽ·½³Ì¼´¿É£¬ÀûÓÃͬ½ÇÈý½Çº¯ÊýµÄ¹ØÏµµÃ³öÇúÏߵįÕͨ·½³Ì£»
£¨2£©¸ù¾ÝÖ±Ï߯½ÐÐÓëбÂʵĹØÏµµÃ³öl1бÂÊΪ$\sqrt{3}$£¬Ê¹Óôý¶¨ÏµÊý·¨Çó³öl1µÄ·½³Ì£®

½â´ð ½â£º£¨1£©ÓɲÎÊý·½³Ì¿ÉÖªÖ±ÏßlµÄÇãб½ÇΪ60¡ã£¬¹ý¶¨µã£¨1£¬0£©£®
¡àÖ±ÏßlµÄÆÕͨ·½³ÌΪy=$\sqrt{3}$£¨x-1£©£¬¼´$\sqrt{3}$x-y-$\sqrt{3}$=0£®
ÇúÏßCµÄÆÕͨ·½³ÌΪx2+y2=1£®
£¨2£©¡ßÖ±ÏßlÓëÖ±Ïßl1ƽÐУ¬
¡àÖ±Ïßl1µÄбÂÊΪ$\sqrt{3}$£¬
ÉèÖ±Ïßl1µÄ·½³ÌΪ$\sqrt{3}$x-y+c=0£¬
Ôò$\frac{|c|}{2}=1$£¬¡àc=¡À2£®
¡àÖ±Ïßl1µÄ·½³ÌΪ$\sqrt{3}$x-y+2=0£¬»ò$\sqrt{3}$x-y-2=0£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬Ö±ÏßÓëÔ²µÄλÖùØÏµ£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Ò»¸ö¿Ú´üÖÐÓÐÎåÕÅ´óС£¬ÐÎ×´ÍêÈ«ÏàͬµÄ¿¨Æ¬£¬ÉÏÃæ·Ö±ð±êÓÐÊý×Ö1£¬2£¬3£¬4£¬5£¬ÏÈ´ÓÖÐÈÎÒâ³é³öÒ»ÕÅ×÷ΪʮλÉϵÄÊý×Ö£¨²»·Å»Ø£©£¬ÔÙ´ÓÖгé³öÒ»ÕÅ×÷Ϊ¸öλÉϵÄÊý×Ö£®
£¨1£©ÊÔÎÊ£ºÒ»¹²ÓжàÉÙÖÖ²»Í¬µÄ½á¹û£¿ÇëÁгöËùÓпÉÄܵĽá¹û£»
£¨2£©Çó³éµ½µÄÁ½Î»ÊýÊÇżÊýµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖª|x|£¼2£¬|y|£¼2£¬ÇóÖ¤£º|4-xy|£¾2|x-y|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÉèFΪÅ×ÎïÏßC£ºy2=3xµÄ½¹µã£¬¹ýFÇÒÇãб½ÇΪ30¡ãµÄÖ±Ïß½»CÓÚA£¬BÁ½µã£¬ÈôÅ×ÎïÏßµÄ×¼ÏßÓëxÖáµÄ½»µãΪP£¬Ôò¡÷PABµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®$\frac{{3\sqrt{3}}}{4}$B£®$\frac{{9\sqrt{3}}}{8}$C£®$\frac{9}{2}$D£®$\frac{9}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=5}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©±íʾµÄÇúÏßÊÇ£¨¡¡¡¡£©
A£®Ò»ÌõÖ±ÏßB£®Á½ÌõÖ±ÏßC£®Ò»ÌõÉäÏßD£®Ò»ÌõÏß¶Î

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÏÂÁвÎÊý·½³Ì»¯³ÉÆÕͨ·½³Ì£¨ÆäÖÐtÓë¦ÕÊDzÎÊý£©£¬²¢ËµÃ÷¸÷±íʾʲôÇúÏߣº
£¨1£©$\left\{\begin{array}{l}{x=3-2t}\\{y=-1-4t}\end{array}\right.$ 
£¨2£©$\left\{\begin{array}{l}{x=4cos¦Õ}\\{y=3sin¦Õ}\end{array}\right.$
£¨3£©$\left\{\begin{array}{l}{x=\frac{a}{2}£¨t+\frac{1}{t}£©}\\{y=\frac{b}{2}£¨t-\frac{1}{t}£©}\end{array}\right.$
£¨4£©$\left\{\begin{array}{l}{x=5cos¦Õ+2}\\{y=2sin¦Õ-3}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=x-a-lnx£¨a¡ÊR£©£®
£¨1£©Èôf£¨x£©¡Ý0ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨1£©Ö¤Ã÷£ºÈô0£¼x1£¼x2£¬Ôò$\frac{f£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{2}-{x}_{1}}$£¼$\frac{1}{{x}_{1}£¨{x}_{1}+1£©}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®¸ø¶¨ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬³ÆÔ²C1£ºx2+y2=a2+b2ΪÍÖÔ²CµÄ¡°°éËæÔ²¡±£® ÒÑÖªµãA£¨2£¬1£©ÊÇÍÖÔ²G£ºx2+4y2=mÉϵĵ㣮
£¨1£©Èô¹ýµã$P£¨0£¬\sqrt{10}£©$µÄÖ±ÏßlÓëÍÖÔ²GÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã£¬Çól±»ÍÖÔ²GµÄ°éËæÔ²G1Ëù½ØµÃµÄÏÒ³¤£»
£¨2£©ÍÖÔ²GÉϵÄB£¬CÁ½µãÂú×ã4k1•k2=-1£¨ÆäÖÐk1£¬k2ÊÇÖ±ÏßAB£¬ACµÄбÂÊ£©£¬ÇóÖ¤£ºB£¬C£¬OÈýµã¹²Ïߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªa1=$\frac{1}{2}£¬{a_{n+1}}=\frac{a_n}{{1+2{a_n}}}$£¨n¡ÊN*£©
£¨1£©Çóa2£¬a3£¬a4²¢Óɴ˲ÂÏëÊýÁÐ{an}µÄͨÏʽanµÄ±í´ïʽ£»
£¨2£©ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷ÄãµÄ²ÂÏ룮

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸