精英家教网 > 高中数学 > 题目详情
9.如图所示,AB是⊙O的直径,AC切⊙O于点A,AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E.
(1)求证:$\frac{AP}{PC}$=$\frac{FA}{AB}$;
(2)若⊙O的直径AB=1,求tan∠CPE的值.

分析 (1)由弦切角定理,可得∠PAC=∠F,进而可得△APC∽△FAC,结合AC=AB,和相似三角形对应边成比例,可证得:$\frac{AP}{PC}$=$\frac{FA}{AB}$.
(2)若⊙O的直径AB=1,由切割线定理可得PC=$\frac{\sqrt{5}-1}{2}$,进而根据FA∥BE,即∠CPE=∠F,解Rt△FAP可得答案.

解答 证明:(1)∵AC切⊙O于点A,PA是弦,
∴∠PAC=∠F,
∵∠C=∠C,
∴△APC∽△FAC,
∴$\frac{AP}{FA}=\frac{PC}{AC}$,
∵AC=AB,
∴$\frac{AP}{PC}$=$\frac{FA}{AB}$.
解:(2)∵AC切⊙O于点A,CPF为⊙O的割线,
则有AC2=CP•CF=CP(CP+PF),
∵PF=AC=AB=1,
∴PC=$\frac{\sqrt{5}-1}{2}$.
∵FA∥BE,
∴∠CPE=∠F,
∵FP为⊙O的直径,
∴∠FAP=90°,
由(1)中证得$\frac{AP}{FA}=\frac{PC}{AC}$,
在Rt△FAP中,tan∠F=$\frac{\sqrt{5}-1}{2}$.
∴tan∠CPE=$\frac{\sqrt{5}-1}{2}$.

点评 本题考查的知识点弦切角定理,圆周角定理,相似三角形的判定与性质,切割线定理,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xoy中,曲线C1:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2$\sqrt{3}$cosθ.
(I).求C2与C1交点的直角坐标;
(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.
(1)判断平面BEG与平面ACH的位置关系.并证明你的结论;
(2)若正方体棱长为1,求三棱锥F-BEG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在直三棱柱ABC-A1B1C1中,AB=BC=AC=2,AA1=3,点M是B1C1的中点.
(1)求证:AB1∥平面A1MC;
(2)求点B到平面A1MC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a为常数,函数f(x)=xlnx-$\frac{1}{2}$ax2
(1)当a=0时,求函数f(x)的最小值;
(2)若f(x)有两个极值点x1,x2(x1<x2
①求实数a的取值范围;
②求证:x1x2>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,1),
(1)当k为何值时,k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{b}$垂直?
(2)若$\overrightarrow{AB}$=2$\overrightarrow{a}$+3$\overrightarrow{b}$,$\overrightarrow{BC}$=$\overrightarrow{a}$+m$\overrightarrow{b}$且A、B、C三点共线,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=x2+2(a-1)x在区间[4,+∞)上是增函数,则实数a的取值范围是(  )
A.a≥-3B.a≤-3C.a≤3D.a≤5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知直线l与双曲线x2-y2=1交于A、B两点,若线段AB的中点为C(2,1),则直线l的斜率为(  )
A.-2B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.1443与999的最大公约数是111.

查看答案和解析>>

同步练习册答案