精英家教网 > 高中数学 > 题目详情
1.若函数f(x)=x2+2(a-1)x在区间[4,+∞)上是增函数,则实数a的取值范围是(  )
A.a≥-3B.a≤-3C.a≤3D.a≤5

分析 求出二次函数f(x)的增区间,可得[4,+∞)⊆[1-a,+∞),可得1-a≤4,解不等式即可得到所求范围.

解答 解:函数f(x)=x2+2(a-1)x的对称轴为x=1-a,
f(x)的增区间为[1-a,+∞),
由题意可得[4,+∞)⊆[1-a,+∞),
即有1-a≤4,解得a≥-3.
故选:A.

点评 本题考查函数的单调性的运用:求取值范围,考查二次函数的单调区间的运用,考查不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设向量$\overrightarrow{a}=(6,x)$,$\overrightarrow{b}$=(2,-2),且($\overrightarrow{a}-\overrightarrow{b}$)$⊥\overrightarrow{b}$,则x的值是(  )
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律:θ=m•2t+2•$\frac{1}{{2}^{t}}$ (t≥0,并且m>0).
(1)如果m=2,求经过多少时间,物体的温度为5摄氏度;
(2)若物体的温度总不低于2摄氏度,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,AB是⊙O的直径,AC切⊙O于点A,AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E.
(1)求证:$\frac{AP}{PC}$=$\frac{FA}{AB}$;
(2)若⊙O的直径AB=1,求tan∠CPE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)同时满足:①对于定义域上的任意x,恒有f(x)+f(-x)=0;②对于定义域上的任意x1,x2.当x1≠x2时,恒有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0.则称函数f(x)为“理想函数”,则下列四个函数中:①f(x)=$\frac{1}{2}$;②f(x)=x2;③f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≥0}\\{{x}^{2},x<0}\end{array}\right.$;④f(x)=log${\;}_{\frac{1}{2}}$($\sqrt{{x}^{2}+1}$+x)可以称为“理想函数”的有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设数列{an}的通项公式为${a_n}=\left\{{\begin{array}{l}{{2^n}({n为奇数})}\\{{3^n}({n为偶数})}\end{array}}\right.$,求数列{an}前2n项和为S2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.直线(m+2)x-(2m-1)y-(3m-4)=0,恒过定点(-1,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设椭圆C的两个焦点分别为F1、F2,若C上存在点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则C的离心率等于(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.计算:(log62)•(log618)+(log63)2 的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案