精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=
1
2
an+1=
(n+1)(2an-n)
an+4n
(n∈N+)

(1)求a2,a3,a4
(2)是否存在实数t,使得数列
an+tn
an+n
是公差为-1的等差数列,若存在求出t的值,否则,请说明理由;
(3)记bn=
1
3
n+2
2
an+2
(n∈N+)
数列{bn}的前n项和为Sn,求证:Sn>-
2
3
+1
12
分析:(1)由a1=
1
2
an+1=
(n+1)(2an-n)
an+4n
,能求出a2,a3,a4
(2)由
an+1+t(n+1)
an+1+n+1
-
an+tn
an+n
=
(n+1)(2an-n)
an+4n
+t(n+1)
(n+1)(2an-n)
an+4n
+n+1
-
an+tn
an+n
=
(t+2)an+(4t-1)n
3an+3n
-
an+tn
an+n
=
t-1
3
,知数列{
an+tn
an+n
}
是公差为
t-1
3
的等差数列.由此能求出t的值.
(3)由
an-2n
an+n
=
a1-2
a1+1
+(n-1)×(-1)=-n
,知an=
-n2+2n
n+1
,由此入手能够证明Sn>-
2
3
+1
12
解答:解:(1)∵a1=
1
2
an+1=
(n+1)(2an-n)
an+4n

a2=0,a3=-
3
4
a4=-
8
5
.(3分)
(2)
an+1+t(n+1)
an+1+n+1
-
an+tn
an+n
=
(n+1)(2an-n)
an+4n
+t(n+1)
(n+1)(2an-n)
an+4n
+n+1
-
an+tn
an+n
=
(t+2)an+(4t-1)n
3an+3n
-
an+tn
an+n
=
t-1
3

∴数列{
an+tn
an+n
}
是公差为
t-1
3
的等差数列.
由题意,知
t-1
3
=-1
,得t=-2.(7分)
(3)由(2)知
an-2n
an+n
=
a1-2
a1+1
+(n-1)×(-1)=-n

所以an=
-n2+2n
n+1
,(9分)
此时bn=
1
3
n+2
2
-(n+2)2+2(n+2)
n+3
=
-n-3
(
3
)
n+2
(n+2)n
=
1
2
[
1
(
3
)
n+2
(n+2)
-
1
(
3
)
n
n
]

Sn=
1
2
[
1
(
3
)
3
×3
-
1
3
+
1
(
3
)
4
×4
-
1
(
3
)
2
×2
+
1
(
3
)
5
×5
-
1
(
3
)
3
×3
++
1
(
3
)
n+2
×(n+2)
-
1
(
3
)
n
×n
]
=
1
2
[-
1
3
-
1
6
+
1
(
3
)
n+1
×(n+1)
+
1
(
3
)
n+2
×(n+2)
]>
1
2
×(-
1
3
-
1
6
)=-
2
3
+1
12

Sn>-
2
3
+1
12
.(14分)
点评:本题考查数列的性质和应用,解题时要注意公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案