精英家教网 > 高中数学 > 题目详情

已知函数,函数

(1)当x≠0时,求函数y=g(x)的表达式;

(2)若a>0,函数y=g(x)在(0,+∞)上的最小值是2,求a的值;

(3)在(2)的条件下,求直线与函数的图象所围成图形的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-
1
2
x2
-2x,g(x)=logax(a>0,且a≠1),其中a为常数.如果h(x)=f(x)+g(x)是增函数,且h′(x)存在零点(h′(x)为h(x)的导函数).
(1)求a的值;
(2)设A(x1,y1)、B(x2,y2)(x1<x2)是函数y=g(x)的图象上两点,g′(x0) =
y2-y1
x2-x1
(g′(x)为g(x)的导函数),证明:x1<x0<x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+kbx(x>0)与函数g(x)=ax+blnx,a、b、k为常数,它们的导函数分别为y=f′(x)与y=g′(x)
(1)若g(x)图象上一点p(2,g(2))处的切线方程为:x-2y+2ln2-2=0,求a、b的值;
(2)对于任意的实数k,且a、b均不为0,证明:当ab>0时,y=f′(x)与y=g′(x)的图象有公共点;
(3)在(1)的条件下,设A(x1,y1),B(x2,y2),(x1<x2)是函数y=g(x)的图象上两点,g′(x0)=
y2-y1x2-x1
,证明:x1<x0<x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=数学公式的定义域为[α,β],值域为[logaa(β-1),logaa(α-1)],并且f(x)在[α,β]上为减函数.
(1)求a的取值范围;
(2)求证:2<α<4<β;
(3)若函数g(x)=logaa(x-1)-数学公式,x∈[α,β]的最大值为M,求证:0<M<1.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省温州市苍南中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=的定义域为[α,β],值域为[logaa(β-1),logaa(α-1)],并且f(x)在[α,β]上为减函数.
(1)求a的取值范围;
(2)求证:2<α<4<β;
(3)若函数g(x)=logaa(x-1)-,x∈[α,β]的最大值为M,求证:0<M<1.

查看答案和解析>>

科目:高中数学 来源:四川省月考题 题型:解答题

已知函数f(x)=的定义域为[α,β],值域为[logaa(β﹣1),logaa(α﹣1)],并且f(x)在[α,β]上为减函数.
(1)求a的取值范围;
(2)求证:2<α<4<β;
(3)若函数g(x)=logaa(x﹣1)﹣,x∈[α,β]的最大值为M,求证:0<M<1.

查看答案和解析>>

同步练习册答案