精英家教网 > 高中数学 > 题目详情
已知 cos(
π
4
+x)=
3
5
17π
12
<x<
4

(1)求sin2x的值.
(2)求 
sin2x+2sin2x
1-tanx
的值.
分析:(1)把要求的式子化为-sin2x,再利用已知条件利用二倍角公式求得sin2x的值,即可求得要求式子的值.
(2)把要求的式子化为sin2x•tan(
π
4
+x),根据x的范围求出sin(
π
4
+x)和cos(
π
4
+x)的值,即可求得tan(
π
4
+x)的值,从而求得
sin2x+2sin2x
1-tanx
的值.
解答:解:(1)∵cos2(
π
4
+x)=cos(
π
2
+2x)=-sin2x

又cos2(
π
4
+x
)=2cos2
π
4
+x
)-1=
9
25
-1=-
7
25

sin2x=
7
25

(2)
sin2x+2sin2x
1-tanx
=
sin2x(1+
sinx
cosx
)
1-tanx
=
sin2x(1+tanx)
1-tanx
=sin2xtan(
π
4
+x)

17π
12
<x<
4
,∴
3
<x+
π
4
<2π

sin(
π
4
+x)=-
1-cos2(
π
4
+x)
=-
4
5

tan(
π
4
+x)=-
4
3

sin2x+2sin2x
1-tanx
=
7
25
×(-
4
3
)=-
28
75
点评:本题主要考查三角函数的恒等变换及化简求值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cos(
π
4
-α)cos(
π
4
+α)=
2
6
(0<α<
π
2
)
,则sin2a等于(  )
A、
2
3
B、
7
6
C、
34
6
D、
7
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•唐山一模)已知cos(α-
π
4
)=
1
4
,则sin2α
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(
π
4
+x)=-
3
5
,且x是第三象限角,则
1+tanx
1-tanx
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(
π
4
+x)=
3
5
,且0<x<
π
4
,求
sin(
π
4
-x)
cos(2x+5π)
+sin(2x-
2
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(
π
4
+α)=
3
5
π
2
≤α<
2
,求
1-cos2α+sin2α
1-tanα
的值.

查看答案和解析>>

同步练习册答案