分析 (1)问题转化为(x2-3x+2)(x+1)>0,解出即可;(2)设x+1=t∈(2,4),换元得到$\frac{{x}^{2}-2x+3}{x+1}$=t+$\frac{6}{t}$-4,求出其范围即可.
解答 解:(1)∵$\frac{{{x^2}-2x+3}}{x+1}$>1,
∴$\frac{{x}^{2}-3x+2}{x+1}$>0,即(x2-3x+2)(x+1)>0,
解得:-1<x<1或x>2;
(2)∵x∈(1,3),
∴设x+1=t∈(2,4),
则x=t-1,
$\frac{{x}^{2}-2x+3}{x+1}$
=$\frac{{(t-1)}^{2}-2(t-1)+3}{t}$
=$\frac{{t}^{2}-4t+6}{t}$
=t+$\frac{6}{t}$-4∈[2$\sqrt{6}$-4,$\frac{3}{2}$).
点评 本题考查了解不等式问题,考查换元思想,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 已知p:?a∈R,方程ax2-2x+a=0有正实数,则¬p:?a∈R,方程ax2-2x+a=0有负实根 | |
| B. | 若X~N(3,4),则P(X<1-3a)=P(X>a2+7)成立的一个必要不充分条件是a=2 | |
| C. | 若函数f(x)=-$\frac{1}{3}$x3+2x2-mx-1在R上是减函数,则m>4 | |
| D. | 若y与x的相关系数r=1,则y与x有线性相关关系,且正相关 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 支持 | 反对 | 合计 | |
| 男性 | 16 | 14 | 30 |
| 女性 | 44 | 26 | 70 |
| 合计 | 60 | 40 | 100 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,3) | B. | {1,2,3} | C. | {1,2} | D. | {2,3} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com