精英家教网 > 高中数学 > 题目详情
(2012•枣庄二模)已知函数f(x)=2co
s
2
 
ωx-1+2
3
cosωxsinωx(0<ω<1)
,直线x=
π
3
是f(x)
图象的一条对称轴.
(1)试求ω的值:
(2)已知函数y=g(x)的图象是由y=f(x)图象上的各点的横坐标伸长到原来的2倍,然后再向左平移
3
个单位长度得到,若g(2α+
π
3
)=
6
5
,α∈(0,
π
2
),求sinα
的值.
分析:(1)利用三角函数的恒等变换化简函数f(x) 的解析式为2sin(2ωx+
π
6
),根据直线x=
π
3
是f(x)
图象的一条对称轴,故2sin(2ω•
π
3
+
π
6
)=2,故有 2ω•
π
3
+
π
6
=kπ+
π
2
,k∈z,再由0<ω<1,求出ω 的值.
(2)由(1)知,f(x)=2sin(2ωx+
π
6
),可得g(x)=2cos
1
2
x
.由 g(2α+
π
3
)=
6
5
,α∈(0,
π
2
)
,可得 
cos(α+
π
6
)=
4
5
.再由sinα=sin[(α+
π
6
)-
π
6
],利用两角和的正弦公式求得结果.
解答:解:(1)∵函数f(x)=2co
s
2
 
ωx-1+2
3
cosωxsinωx(0<ω<1)

∴f(x)=cos(2ωx)+
3
sin(2ωx)=2sin(2ωx+
π
6
).
∵直线x=
π
3
是f(x)
图象的一条对称轴,故2sin(2ω•
π
3
+
π
6
)=2,即 sin(2ω•
π
3
+
π
6
)=1,
故有 2ω•
π
3
+
π
6
=2kπ+
π
2
,k∈z,故ω=3k+
1
2
,k∈z.
再由0<ω<1,可得-
1
3
<k<
1
3
,∴ω=
1
2

(2)由(1)知,f(x)=2sin(2ωx+
π
6
),可得g(x)=2sin[
1
2
(x+
3
)+
π
6
]=2cos
1
2
x

g(2α+
π
3
)=
6
5
,α∈(0,
π
2
)
,可得 2cos
1
2
(2α+
π
3
)
=
6
5
,故 cos(α+
π
6
)=
4
5
..
故sinα=sin[(α+
π
6
)-
π
6
]=sin(α+
π
6
)cos
π
6
-cos(α+
π
6
)sin
π
6
=
4
5
×
3
2
-
3
5
×
1
2
=
4
3
-3
10
点评:本题主要考查三角函数的恒等变换及化简求值,函数y=Asin(ωx+∅)的图象变换,两角和的正弦公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•枣庄二模)已知定义在R上的函数f(x)满足f(x+
3
2
)=-f(x)
,且函数y=f(x-
3
4
)
为奇函数,给出三个结论:
①f(x)是周期函数;②f(x)是图象关于点(-
3
4
,0)对称;③f(x)是偶函数.其中正确结论的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)设等比数列{an}的前n项之和为Sn,若8a2+a5=0,则
S5
S3
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)α是第四象限角,cosα=
3
5
,则cos(α-
π
4
)
=
-
2
10
-
2
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)已知i为虚数单位,复数z=(2-i)(1+i)2的实部为a,虚部为b,则logab=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)已知点Q(0,2
2
)及抛物线
y
2
 
=4x
上一动点P(x,y),则x+|PQ|的最小值是
2
2

查看答案和解析>>

同步练习册答案