精英家教网 > 高中数学 > 题目详情
已知向量
a
={sinx,cosx}
b
={cosx,cosx},(x∈R)
,已知函数f(x)=
a
•(
a
+
b
)

(1)求函数f(x)的最值与最小正周期;
(2)求使不等式f(x)≥
3
2
x∈[0,π]成立的x的取值范围.
a
+
b
={sinx+cosx,2cosx}
…(1分)
f(x)=
a
•(
a
+
b
)

=sinx(sinx+cosx)+2cos2x
=1+
1
2
sin2x+
1
2
(cos2x+1)

=
3
2
+
2
2
sin(2x+
π
4
)
…(4分)
(1)∴f(x)的最大值是
3
2
+
2
2
,f(x)的最小值是
3
2
-
2
2
,…(6分)
f(x)的最小正周期是T=
2
…(7分)
(2)由解知f(x)≥
3
2
?
3
2
+
2
2
sin(2x+
π
4
)≥
3
2
?sin(2x+
π
4
)≥0?kπ-
π
8
≤x≤kπ+
8
,k∈Z
…(10分)
又∵x∈[0,π]
∴x的取值范围是[0,
8
]∪[
8
,π]
…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,
3
)
b
=(1,cosθ)
θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ;
(2)求|
a
+
b
|
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表达式.
(2)用“五点作图法”画出函数f(x)在一个周期上的图象.
(3)写出f(x)在[-π,π]上的单调递减区间.
(4)设关于x的方程f(x)=m在x∈[-π,π]上的根为x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,则sin2θ+cos2θ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(1,cosθ),θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ的值;
(2)若已知sinθ+cosθ=
2
sin(θ+
π
4
)
,利用此结论求|
a
+
b
|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1)
b
=(2,2)
f(x)=
a
b
+2

①用“五点法”作出函数y=f(x)在长度为一个周期的闭区间的图象.
②求函数f(x)的最小正周期和单调增区间;
③求函数f(x)的最大值,并求出取得最大值时自变量x的取值集合
④函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
⑤当x∈[0,π],求函数y=2sin(x-
π
4
)
的值域
解:(1)列表
(2)作图
精英家教网

查看答案和解析>>

同步练习册答案