精英家教网 > 高中数学 > 题目详情
(本大题满分14分)
已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于
(Ⅰ)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(Ⅱ)当时,过点的直线交曲线两点,设点关于轴的对称点为(不重合).求证直线轴的交点为定点,并求出该定点的坐标.
(1) (1) 当时 轨迹表示焦点在轴上的椭圆,且除去两点;
时 轨迹表示以为圆心半径是1的圆,且除去两点;
时 轨迹表示焦点在轴上的椭圆,且除去两点;
时  轨迹表示焦点在轴上的双曲线,且除去两点
(2) 直线过定点  

试题分析:(Ⅰ)由题知: 
化简得:                  ……………………………2分
时 轨迹表示焦点在轴上的椭圆,且除去两点;
时 轨迹表示以为圆心半径是1的圆,且除去两点;
时 轨迹表示焦点在轴上的椭圆,且除去两点;
时  轨迹表示焦点在轴上的双曲线,且除去两点;
……………………………6分
(Ⅱ)设 
依题直线的斜率存在且不为零,则可设:
代入整理得
,               ………………………………9分
又因为不重合,则
的方程为 令

故直线过定点.                        ……………………………13分
解二:设
依题直线的斜率存在且不为零,可设:
代入整理得:
,,                ……………………………9分
的方程为  令

直线过定点                        ……………………………13分
点评:解决含参数的曲线方程的问题,主要是关注我们方程的特点来分类讨论得到,同时能结合设而不求的思想求解坐标,进而求解直线方程,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题12分)已知椭圆的左、右焦点分别为F1、F2,其中F2也是抛物线的焦点,M是C1与C2在第一象限的交点,且  
(I)求椭圆C1的方程;  (II)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线上,求直线AC的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若双曲线的离心率为e,则e=             

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知焦点在x轴上的双曲线的渐近线方程为y= ±,则此双曲线的离心率为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,过点作圆的割线与切线为切点,连接的平分线与分别交于点,若,则          ;  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在平面直角坐标系中,已知三点,曲线C上任意—点满足:
(l)求曲线C的方程;
(2)设点P是曲线C上的任意一点,过原点的直线L与曲线相交于M,N两点,若直线PM,PN的斜率都存在,并记为.试探究的值是否与点P及直线L有关,并证明你的结论;
(3)设曲线C与y轴交于D、E两点,点M (0,m)在线段DE上,点P在曲线C上运动.若当点P的坐标为(0,2)时,取得最小值,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的渐近线方程为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是非零实数,则方程所表示的图形可能是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知动点M的坐标满足,则动点M的轨迹方程是
A.椭圆B.双曲线C.抛物线D.以上都不对

查看答案和解析>>

同步练习册答案