精英家教网 > 高中数学 > 题目详情
等差数列{an}中,a3=4,a8=9,其前n项的和为Sn
(1)求数列{an}的通项公式an及其前n项和Sn
(2)设bn=2an,求数列{bn}的通项公式bn及其前n项和Tn
(1)∵等差数列{an}中,a3=4,a8=9,
a1+2d=4
a1+7d=9

解得
a1=2
d=1

∴an=2+(n-1)=n+1,
Sn=2n+
n(n-1)
2
×1
=
n2+3n
2

(2)∵an=n+1,
bn=2an=2n+1
bn+1
bn
=2,
bn=4•2n-1=2n+1
Tn=
4(1-2n)
1-2
=2n+2-4.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

从集合{1,2,3,4,5,6,7,8,9,10}中任选三个不同的数,如果这三个数经过适当的排列成等差数列,则这样的等差数列一共有 (      )
A  20个 B  40个      C 10个               D 120个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(
1
3
)x
,等比数列{an}的前n项和为f(n)-c,正项数列{bn}的首项为c,且前n项和Sn满足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(1)求数列{an}的通项公式;
(2)证明数列{
Sn
}是等差数列,并求Sn
(3)若数列{
1
bnbn+1
}前n项和为Tn,问Tn
1000
2009
的最小正整数n是多少?
(4)设cn=
2bn
an
,求数列{cn}的前n项和Pn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

数列{an}中,a2=2,an,an+1是方程x2-(2n+1)x+
1
bn
=0
的两个根,则数列{bn}的前n项和Sn=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和sn=10n-n2,bn=|an|求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列{an}的前n项和Sn,a1=1,an+1=2Sn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log3an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

递增的等比数列{an}的前n项和为Sn,且S2=6,S4=30
(I)求数列{an}的通项公式.
(II)若bn=anlog
1
2
an
,数列{bn}的前n项和为Tn,求Tn+n•2n+1>50成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}满足:a1=a+2(a≥0),an+1=
an+a
,n∈N*
(1)若a=0,求数列{an}的通项公式;
(2)设bn=|an+1-an|,数列的前n项和为Sn,证明:Sn<a1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列an中,a1=1,且点(an,an+1)(n∈N*)在函数f(x)=x+2的图象上.
(Ⅰ)求数列an的通项公式;
(Ⅱ)在数列an中,依次抽取第3,4,6,…,2n-1+2,…项,组成新数列bn,试求数列bn的通项bn及前n项和Sn

查看答案和解析>>

同步练习册答案