精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和sn=10n-n2,bn=|an|求数列{bn}的前n项和Tn

n≥2 时,an=Sn-Sn-1=10n-n2-[10(n-1)-(n-1)2]=11-2n,
n=1 时,a1=S1=9 也适合上式
∴an=11-2n(n∈N*
n≤5 时,an>0,bn=an,Tn=a1+a2+…+an=Sn=10n-n2
n>5 时,an<0,bn=-an
Tn=(a1+a2+a3+a4+a5)-(a6+a7+…an)=2S5-Sn=n2-10n+50
综上所述Tn=
10n-n2n≤5
n2-10n+50n>5
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

数列{an},{bn}的通项公式分别是an=n,bn=2n,则数列{an•bn}的前100项的和为(  )
A.99×2101+2B.99×2101-2C.100×2101+2D.100×2101-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知公差d不为0的等差数列{an}中,a1=1,且a1,a3,a7成等比数列.
(1)求通项an及前n项和Sn
(2)若有一新数列{bn},且bn=
1
anan+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设an(n=2,3,4…)是(3+
x
)n
展开式中x的一次项的系数,则
2010
2009
(
32
a2
+
33
a3
+…+
32010
a2010
)
的值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

等差数列{an}中,a3=4,a8=9,其前n项的和为Sn
(1)求数列{an}的通项公式an及其前n项和Sn
(2)设bn=2an,求数列{bn}的通项公式bn及其前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(文)Sn=1-2+3-4+5-6+…+(-1)n+1•n,则S100+S200+S301等于(  )
A.1B.-1C.51D.52

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设Sn等比数列{an}的前n项和,且a2=
1
9
S2=
4
9

(1)求数列{an}的通项;
(2)设bn=
n
an
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列1
1
2
,3
1
4
,5
1
8
,7
1
16
,…
,前n项和为(  )
A.n2-
1
2n
+1
B.n2-
1
2n+1
+
1
2
C.n2-n-
1
2n
+1
D.n2-n-
1
2n+1
+
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列满足,,….若,则(       )
          B3                 C4                     D5

查看答案和解析>>

同步练习册答案