精英家教网 > 高中数学 > 题目详情
设Sn等比数列{an}的前n项和,且a2=
1
9
S2=
4
9

(1)求数列{an}的通项;
(2)设bn=
n
an
,求数列{bn}的前n项和Sn
(1)设首项为a1,公比为q,由a2=
1
9
,S2=
4
9

得:
a1q=
1
9
a1+a1q=
4
9

解得:
a1=
1
3
q=
1
3

∴an=
1
3n
;.
(2)∵bn=
n
an
=
n
1
3n
=n•3n
∴Sn=3+2×32+3×33+…+n•3n,①
∴3Sn=32+2×33+3×34+…+(n-1)•3n+n•3n+1,②
②-①得2Sn=n•3n+1-(3+32+33+…+3n)=n•3n+1-
3(1-3n)
1-3
=
(2n-1)×3n+1
2
+
3
2

∴Sn=
(2n-1)×3n+1
4
+
3
4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在等差数列{an}中,a1=2,a1+a2+a3=12.
(1)求数列{an}的通项公式;
(2)令bn=an3n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和sn=10n-n2,bn=|an|求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

递增的等比数列{an}的前n项和为Sn,且S2=6,S4=30
(I)求数列{an}的通项公式.
(II)若bn=anlog
1
2
an
,数列{bn}的前n项和为Tn,求Tn+n•2n+1>50成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知{an}是等差数列,其中a10=30,a20=50.
(1)求数列{an}的通项公式;
(2)若bn=an-20,求数列{bn}的前n项和Tn的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}满足:a1=a+2(a≥0),an+1=
an+a
,n∈N*
(1)若a=0,求数列{an}的通项公式;
(2)设bn=|an+1-an|,数列的前n项和为Sn,证明:Sn<a1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义一种新运算*,满足n*k=nλk-1(n,k∈N*λ为非零常数).
(1)对于任意给定的k,设an=n*k(n=1,2,3,…),证明:数列{an}是等差数列;
(2)对于任意给定的n,设bk=n*k(k=1,2,3…),证明:数列{bk}是等比数列;
(3)设cn=n*n(n=1,2,3,..),试求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在等比数列{an}中,an>0,(n∈N*),公比q>1,a1a3+2a2a4+a3a5=100,且4是a2与a4的等比中项,
(1)求数列{an}的通项公式;
(2)设bn=an2+log2an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知{an}是首项为1的等差数列,Sn是{an}的前n项和,且S5=a13,则数列{
1
anan+1
}
的前5项和为(  )
A.
10
11
B.
5
11
C.
4
5
D.
2
5

查看答案和解析>>

同步练习册答案