精英家教网 > 高中数学 > 题目详情
已知{an}是等差数列,其中a10=30,a20=50.
(1)求数列{an}的通项公式;
(2)若bn=an-20,求数列{bn}的前n项和Tn的最小值.
(1)由a10=30,a20=50,
得:
a1+9d=30
a1+19d=50
,解得a1=12,d=2,
∴an=2n+10;
(2)由bn=an-20,得bn=2n-10,
∴当n<5时,bn<0;当n>5时,bn>0;当n=5时,bn=0,
由此可知:数列{bn}的前4或5项的和最小,
又T4=T5=-20,数列{bn}的前n项和的最小值为-20.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设an(n=2,3,4…)是(3+
x
)n
展开式中x的一次项的系数,则
2010
2009
(
32
a2
+
33
a3
+…+
32010
a2010
)
的值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(文)Sn=1-2+3-4+5-6+…+(-1)n+1•n,则S100+S200+S301等于(  )
A.1B.-1C.51D.52

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an}的前n项和为Sn,且Sn=4an+2n+1,n∈N*
(1)求证:{an-2}是等比数列;
(2)求数列{nan}前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设Sn等比数列{an}的前n项和,且a2=
1
9
S2=
4
9

(1)求数列{an}的通项;
(2)设bn=
n
an
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设数列{an},{bn}都是正项等比数列,Sn,Tn分别为数列{lgan}与{lgbn}的前n项和,且
Sn
Tn
=
n
2n+1
,则logb5a5=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an}是公差大于零的等差数列,已知a1=2,a3=a22-10.
(1)求{an}的通项公式;
(2)设数列{bn}是以函数f(x)=4sin2πx的最小正周期为首项,以3为公比的等比数列,求数列{an•bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)满足f(x+1)=3f(x)+2,若a1=1,an=f(n).
(1)设Cn=an+1,证明:{Cn}是等比数列;
(2)设Sn是数列{an}的前n项和,求Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(文)数列{an}中an=,前n项和为Sn,则使Sn<-5成立的自然数n有
A.最大值63B.最大值31C.最小值63D.最小值31

查看答案和解析>>

同步练习册答案