精英家教网 > 高中数学 > 题目详情
已知函数f(x)满足f(x+1)=3f(x)+2,若a1=1,an=f(n).
(1)设Cn=an+1,证明:{Cn}是等比数列;
(2)设Sn是数列{an}的前n项和,求Sn
(1)∵f(x+1)=3f(x)+2,an=f(n),
cn+1
cn
=
an+1+1
an+1
=
3an+3
an+1
=3,
又a1=1,于是c1=a1+1=2,
∴数列{Cn}是以2为首项,3为公比的等比数列;
(2)由(1)知,cn=2•3n-1,而Cn=an+1,
∴an=2•3n-1-1,
∴Sn=a1+a2+…+an
=2(1+3+32+…+3n-1)-n
=2×
1-3n
1-3
-n
=3n-n-1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知{an}是等差数列,其中a10=30,a20=50.
(1)求数列{an}的通项公式;
(2)若bn=an-20,求数列{bn}的前n项和Tn的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知Sn数列{an}的前n项和,且Sn=2an-
1
64

(1)求数列{an}的通项公式;
(2)设bn=|log2an|,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在等比数列{an}中,2a2=a1+a3-1,a1=1.
(1)若数列{bn}满足b1+
b2
2
+
b3
3
+…+
bn
n
=an(n∈N*),求数列{bn}的通项公式;
(2)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在数列{an}中,a1=1,an+1
an
=8

(Ⅰ)求a2,a3
(Ⅱ)设bn=log2an,求证:{bn-2}为等比数列;
(Ⅲ)求{an}的前n项积Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知{an}是首项为1的等差数列,Sn是{an}的前n项和,且S5=a13,则数列{
1
anan+1
}
的前5项和为(  )
A.
10
11
B.
5
11
C.
4
5
D.
2
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图给出了3层的三角形,图中所有点的个数S3=10.按其规律再画下去,可以得到n层的三角形,Sn=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于正项数列,定义的“蕙兰”值,现知数列的“蕙兰”值为,则数列的通项公式为=           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列:2,0,2,0,2,0, .前六项不适合下列哪个通项公式
A.=1+(―1)n+1B.=2|sin|
C.=1-(―1)nD.=2sin

查看答案和解析>>

同步练习册答案