精英家教网 > 高中数学 > 题目详情

如图是总体的一个样本频率分布直方图,且在区间[15,18)内的频数为8.

(1)求样本容量;
(2)若在[12,15)内的小矩形的面积为0.06,
①求样本在[12,15)内的频数;
②求样本在[18,33)内的频率。

(1)50;(2)3;0.78.

解析试题分析:(1)根据在[15,18)内频数为8.做出在这一个范围中频率是小正方形的面积是 ×3,知道频率和频数做出样本容量.
(2)①在[12,15)内的小矩形面积为0.06,即这组数据的频率是0.06,用频率乘以样本容量作出在[12,15)内的频数,得到结果.
②根据在[15,18)内频数为8,在[12,15)内的频数是3,而样本容量是50,剩下的部分是要求的频数,只要样本容量减去前两组的频数,得到样本在[18,33)内的频数39,所以样本在[18,33)内的频率为=0.78.
试题解析:(1)由图可知在[15,18)内的频率为×3= 又频数为8
∴样本容量n==50             4分
(2)∵样本在[12,15)内的频率为0.06
①∴样本在[12,15)内的频数为50×0.06=3         8分
②∵样本在[18,33)内的频数为50―3―8=39
∴样本在[18,33)内的频率为=0.78           12分  
考点:频率分布直方图.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取名学生的数学成绩,制成表所示的频率分布表.

组号
分组
频数
频率
第一组



第二组



第三组



第四组



第五组



合计


(1)求的值;
(2)若从第三、四、五组中用分层抽样方法抽取名学生,并在这名学生中随机抽取名学生与张老师面谈,求第三组中至少有名学生与张老师面谈的概率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验。
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线
性回归方程
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:

分组(重量)




频数(个)
5
10
20
15
(1)根据频数分布表计算苹果的重量在的频率;
(2)用分层抽样的方法从重量在的苹果中共抽取4个,其中重量在的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在中各有1个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:
①本村人口:1200人;户数300户,每户平均人口数4人
②应抽户数:30
③抽样间隔:=40
④确定随机数字:取一张人民币,后两位数为12
⑤确定第一样本户:编号为12的户为第一样本户
⑥确定第二样本户:12+40=52,52号为第二样本户
⑦……
(1) 该村委采用了何种抽样方法?
(2) 抽样过程存在哪些问题,试改之;
(3) 何处用的是简单随机抽样?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:

组别
频数
频率
145.5~149.5
8
0.16
149.5~153.5
6
0.12
153.5~157.5
14
0.28
157.5~161.5
10
0.20
161.5~165.5
8
0.16
165.5~169.5


合计


(1)求出表中字母所对应的数值;
(2)在给出的直角坐标系中画出频率分布直方图;
(3)估计该校高一女生身高在149.5~165.5范围内有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为缓解某路段交通压力,计划将该路段实施“交通限行”.在该路段随机抽查了50人,了解公众对“该路段限行”的态度,将调查情况进行整理,制成下表:

年龄
(岁)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
频 数
5
10
15
10
5
5
赞成
人数
4
8
9
6
4
3
(1)作出被调查人员年龄的频率分布直方图.
(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞成“交通限行”的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

研究性学习小组为了解某生活小区居民用水量(吨)与气温(℃)之间的关系,随机统计并制作了5天该小区居民用水量与当天气温的对应表:

日期
9月5日
10月3日
10月8日
11月16日
12月21日
气温(℃)
18
15
11
9
-3
用水量(吨)
57
46
36
37
24
(1)若从这随机统计的5天中任取2天,求这2天中有且只有1天用水量低于40吨的概率(列出所有的基本事件);
(2)由表中数据求得线性回归方程中的,试求出的值,并预测当地气温为5℃时,该生活小区的用水量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其
范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通; T∈[4,6)轻度拥堵; T∈[6,8)中度拥堵;T∈[8,10]严重拥堵,晚高峰时段(T≥2),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的部分直方图如图所示.

(1)请补全直方图,并求出轻度拥堵、中度拥堵、严重拥堵路段各有多少个?
(2)用分层抽样的方法从交通指数在[4,6),[6,8),[8,l0]的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;
(3)从(2)中抽出的6个路段中任取2个,求至少一个路段为轻度拥堵的概率.

查看答案和解析>>

同步练习册答案