精英家教网 > 高中数学 > 题目详情
如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD。
(Ⅰ)求证:BE=DE;
(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC。
证明:(I)设BD中点为O,连接OC,OE,
则由BC=CD知,CO⊥BD,
又已知CE⊥BD,EC∩CO=C,
所以BD⊥平面OCE
所以BD⊥OE,
即OE是BD的垂直平分线,
所以BE=DE。
(II)取AB中点N,连接MN,DN,
∵M是AE的中点,
∴MN∥BE,
又MN?平面BEC,BE?平面BEC,
∴MN∥平面BEC,
∵△ABD是等边三角形,
∴∠BDN=30°,
又CB=CD,∠BCD=120°,
∴∠CBD=30°,
∴ND∥BC,
又DN?平面BEC,
BC?平面BEC,
∴DN∥平面BEC,
又MN∩DN=N,
故平面DMN∥平面BEC,
又DM?平面DMN,
∴DM∥平面BEC。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•青岛一模)如图,几何体ABCD-A1B1C1D1中,四边形ABCD为菱形,∠BAD=60°,AB=a,面B1C1D1∥面ABCD,BB1、CC1、DD1都垂直于面ABCD,且BB1=
2
a
,E为CC1的中点,F为AB的中点.
(Ⅰ)求证:△DB1E为等腰直角三角形;
(Ⅱ)求二面角B1-DE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)如图,几何体ABCD-B1C1D1中,四边形ABCD为菱形,∠BAD=60°,AB=a,面B1C1D1∥面ABCD,BB1、CC1、DD1都垂直于面ABCD,且BB1=
2
a
,E为CC1的中点.
(Ⅰ)求证:△DB1E为等腰直角三角形;
(Ⅱ)求证:AC∥面DB1E.

查看答案和解析>>

科目:高中数学 来源:青岛一模 题型:解答题

如图,几何体ABCD-A1B1C1D1中,四边形ABCD为菱形,∠BAD=60°,AB=a,面B1C1D1面ABCD,BB1、CC1、DD1都垂直于面ABCD,且BB1=
2
a
,E为CC1的中点,F为AB的中点.
(Ⅰ)求证:△DB1E为等腰直角三角形;
(Ⅱ)求二面角B1-DE-F的余弦值.
精英家教网

查看答案和解析>>

科目:高中数学 来源:2013年山东省青岛市高考数学一模试卷(理科)(解析版) 题型:解答题

如图,几何体ABCD-A1B1C1D1中,四边形ABCD为菱形,∠BAD=60°,AB=a,面B1C1D1∥面ABCD,BB1、CC1、DD1都垂直于面ABCD,且,E为CC1的中点,F为AB的中点.
(Ⅰ)求证:△DB1E为等腰直角三角形;
(Ⅱ)求二面角B1-DE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源:2013年河北省衡水中学高考数学六模试卷(理科)(解析版) 题型:解答题

如图,几何体ABCD-A1B1C1D1中,四边形ABCD为菱形,∠BAD=60°,AB=a,面B1C1D1∥面ABCD,BB1、CC1、DD1都垂直于面ABCD,且,E为CC1的中点,F为AB的中点.
(Ⅰ)求证:△DB1E为等腰直角三角形;
(Ⅱ)求二面角B1-DE-F的余弦值.

查看答案和解析>>

同步练习册答案