精英家教网 > 高中数学 > 题目详情
7.用列举法表示集合{x∈N|x-1≤2}为(  )
A.{0,1,2,3}B.{1,2,3}C.{0,1,2,3,4}D.{1,2,3,4}

分析 根据题意,分析可得集合{x∈N|x≤3}的元素为小于等于3的全部正整数,列举法表示该集合即可得答案.

解答 解:集合{x∈N|x-1≤2}={x∈N|x≤3}的元素为不大于3的全部非负整数,
则{x∈N|x≤3}={0,1,2,3};
故选A.

点评 本题考查集合的表示方法,要灵活掌握集合的表示方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.不等式kx2-kx+1>0对一切实数x均成立,则k的取值范围是(  )
A.0<k<4B.0≤k<4C.0<k≤4D.0≤k≤4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知A(3,0),B(0,4),△AOB绕y轴旋转一周得到的几何体的表面积和体积分别是(  )
A.9π,12πB.12π,9πC.24π,12πD.15π,36π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,直三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,AA1=2,点M,N分别为A1B和B1C1的中点.
(1)求异面直线MN与A1C所成角的余弦值;
(2)求三棱锥A1-MNC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设实数x,y满足条件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为 12,则$\frac{3}{a}$+$\frac{4}{b}$的最小值为(  )
A.$\frac{49}{6}$B.$\frac{25}{6}$C.$\frac{8}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}中,a1=1,a2=3,且2nSn=(n+1)Sn+1+(n-1)Sn-1(n≥2,n∈N),则S30=$\frac{34}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某工厂要建造一个长方体无盖贮水池,其容积为6400m3,深为4m,如果池底每1m2的造价为300元,池壁每1m2的造价为240元,问怎样设计水池能使总造价最低,最低总造价是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设点P是椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$上的一点,M、N分别是两圆:(x+3)2+y2=1和(x-3)2+y2=1上的点,则|PM|+|PN|的最大值为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在(2x+a)5的展开式中,含x2项的系数等于320,则$\int_0^a{({e^x}+2x)dx}$等于(  )
A.e2+3B.e2+4C.e+1D.e+2

查看答案和解析>>

同步练习册答案