精英家教网 > 高中数学 > 题目详情

命题“?x∈R,x2-x≥0.”的否定是________.

?x∈R,x2-x<0
分析:全称命题:“?x∈A,P(x)”的否定是特称命题:“?x∈A,非P(x)”,结合已知中原命题“?x∈R,都有x2-x≥0”,易得到答案.
解答:∵原命题“?x∈R,x2-x≥0”
∴命题“?x∈R,x2-x≥0”的否定是:
?x∈R,x2-x<0
故答案为:?x∈R,x2-x<0.
点评:本题考查的知识点是命题的否定,其中熟练掌握全称命题:“?x∈A,P(x)”的否定是特称命题:“?x∈A,非P(x)”,是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列有关命题的说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,x2+x>0”的否定是“
?x∈R,x2+x≤0
?x∈R,x2+x≤0

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:其中真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•天津模拟)给定下列四个命题:
①“x=
π
6
”是“sinx=
1
2
”的充分不必要条件;    
②若“p∨q”为真,则“p∧q”为真;
③命题“?x∈R,x2≥0”的否定是“?x∈R,x2≤0”;
④线性相关系数r的绝对值越接近于1,表明两个随机变量线性相关性越强;
其中为真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,x2+ax-4a<0”的否定是
 

查看答案和解析>>

同步练习册答案