精英家教网 > 高中数学 > 题目详情
16.已知数列{an}为首项为1,公差为2的等差数列
(1求{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}•{a}_{n-1}}$,数列{bn}的前n项和为Tn,求Tn的最小值.

分析 (1)利用等差数列的通项公式即得结论;
(2)通过(1)裂项相加可知Tn=$\frac{1}{2}$-$\frac{1}{2(2n+1)}$,进而作差可知数列{Tn}为递增数列,计算即可.

解答 解:(1)因为a1=1,数列{an}为公差等于2的等差数列,
所以an=1+2(n-1)=2n-1;
(2)由(1)知bn=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Tn=b1+b2+…+bn
=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)
=$\frac{1}{2}$-$\frac{1}{2(2n+1)}$,
∵Tn+1-Tn=$\frac{1}{2}$-$\frac{1}{2(2n+3)}$-[$\frac{1}{2}$-$\frac{1}{2(2n+1)}$]
=$\frac{1}{2(2n+1)}$-$\frac{1}{2(2n+3)}$
=$\frac{1}{(2n+1)(2n+3)}$>0,
∴Tn+1>Tn,即数列{Tn}为递增数列,
∴Tn的最小值为T1=$\frac{1}{2}$-$\frac{1}{6}$=$\frac{1}{3}$.

点评 本题考查数列的通项及前n项和,考查裂项相消法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知△ABC中,A,B,C的对边分别为a,b,c,若$a=\sqrt{10}$,c=3,$cosA=\frac{1}{4}$,则b=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$tan(α+β)=\frac{2}{5}$,$tanβ=\frac{1}{3}$,则$tan(α-\frac{π}{4})$的值为(  )
A.$\frac{8}{9}$B.-$\frac{8}{9}$C.$\frac{1}{17}$D.$\frac{16}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=(sinx,$\frac{3}{4}$),$\overrightarrow{b}$=(cosx,-1).
(1)当$\overrightarrow{a}$∥$\overrightarrow{b}$时,求cos2x-sin2x的值;
(2)设函数f(x)=2($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$,已知在△ABC中,内角A、B、C的对边分别为a、b、c,若a=$\sqrt{3},b=2,sinB=\frac{{\sqrt{6}}}{3}$,求$f(x)+4cos(2A+\frac{π}{6})(x∈[0,\frac{π}{4}])$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,a1≠0,常数λ>0,且λa1an=S1+Sn对一切正整数n都成立.
(1)求数列{an}的通项公式;
(2)设a1>0,λ=100,当n为何值时,数列$\{lg\frac{1}{a_n}\}$的前n项和最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若f(x)=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}(2x-1)}}$,则f(x+1)的定义域为(  )
A.(-$\frac{1}{2}$,0)B.(-$\frac{1}{2}$,0]C.(-$\frac{1}{2}$,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数列{an}中,已知对任意自然数n,a1+2a2+22a3+…+2n-1an=22n-1,则a12+a22+a32+…+an2=(  )
A.3(4n-1)B.3(2n-1)C.4n-1D.(2n-1)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在直角坐标平面xoy上,由不等式组$\left\{\begin{array}{l}{|x|≤2}\\{|y|≤2}\\{||x|-|y||≤1}\end{array}\right.$确定的区域面积为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\frac{lnx}{x+a}({a∈R})$.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直,求a的值;
(2)讨论方程f(x)=1的实根的情况.

查看答案和解析>>

同步练习册答案