精英家教网 > 高中数学 > 题目详情
11.已知数列{an}的前n项和为Sn,a1≠0,常数λ>0,且λa1an=S1+Sn对一切正整数n都成立.
(1)求数列{an}的通项公式;
(2)设a1>0,λ=100,当n为何值时,数列$\{lg\frac{1}{a_n}\}$的前n项和最大?

分析 (1)利用递推关系即可得出.
(2)利用对数的运算性质、等差数列的通项公式与单调性即可得出.

解答 解:(1)令n=1,得$λa_1^2=2{S_1}=2{a_1},{a_1}(λ{a_1}-2)=0$,因为a1≠0,所以${a_1}=\frac{2}{λ}$,当n≥2时,$2{a_n}=\frac{2}{λ}+{S_n}$,$2{a_{n-1}}=\frac{2}{λ}+{S_{n-1}}$,两式相减得2an-2an-1=an(n≥2),
所以an=2an-1(n≥2),从而数列{an}为等比数列,
所以${a_n}={a_1}•{2^{n-1}}=\frac{2^n}{λ}$.
(2)当a1>0,λ=100时,由(1)知,an=$\frac{{2}^{n}}{100}$,
bn=lg$\frac{1}{{a}_{n}}$=$lg\frac{100}{{2}^{n}}$=2-nlg2.
所以数列{bn}是单调递减的等差数列,公差为-lg2,所以${b_1}>{b_2}>…>{b_6}=lg\frac{100}{2^6}=lg\frac{100}{64}>lg1=0$,
当n≥7时,${b_n}≤{b_7}=lg\frac{100}{2^7}<lg1=0$,所以数列$\{lg\frac{1}{a_n}\}$的前6项和最大.

点评 本题考查了等差数列的通项公式、数列递推关系、数列的单调性、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在二维条形图中,两个比值相差越大,要推断的论述成立的可能性就越大.(  )
A.$\frac{a}{a+b}$与$\frac{c}{c+d}$B.$\frac{a}{c+d}$与$\frac{c}{a+b}$C.$\frac{a}{a+b}$与$\frac{c}{b+c}$D.$\frac{a}{b+d}$与$\frac{c}{a+c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.化简$\frac{cos(π+α)•sin(α+2π)}{sin(-α-π)•(cos-π-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知A={α|α=k×45°+15°,k∈Z},当k=k0(k0∈Z)时,A中的一个元素与角-255°终边相同,若k0取值的最小正数为a,最大负数为b,则a+b=(  )
A.-12B.-10C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的导数
(1)y=x2+log3x;    
(2)y=x3•ex
(3)y=$\frac{cosx}{x}$
(4)y=sin2(2x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}为首项为1,公差为2的等差数列
(1求{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}•{a}_{n-1}}$,数列{bn}的前n项和为Tn,求Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.采取系统抽样的方法从1000名学生中抽出20名学生,将这1000名学生随机编号000~999号并分组:第一组000~049号,第二组050~099号,…,第二十组950~999号,若在第三组中抽得号码为122的学生,则在第十八组中抽得号码为:872的学生.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.点(-1,-1)在圆(x+a)2+(y-a)2=4的内部,则a的取值范围是(  )
A.-1<a<1B.0<a<1C.a<-1或a>1D.a=±1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n天监测空气质量指数(AQI),数据统计如下:
空气质量指数(μg/m30-5051-100101-150151-200201-250
空气质量等级空气优空气良轻度污染中度污染重度污染
天数2040m105
(1)根据所给统计表和频率分布直方图中的信息求出n,m的值,并完成頻率分布直方图:

(2)由頻率分布直方图,求该组数据的平均数与中位数;
(3)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A“两天空气都为良”发生的概率.

查看答案和解析>>

同步练习册答案