精英家教网 > 高中数学 > 题目详情
4.化简$\frac{cos(π+α)•sin(α+2π)}{sin(-α-π)•(cos-π-α)}$.

分析 由条件利用诱导公式进行化简所给的式子,可得结果.

解答 解:$\frac{cos(π+α)•sin(α+2π)}{sin(-α-π)•(cos-π-α)}$=$\frac{-cosα•sinα}{sinα•(-cosα)}$=1.

点评 本题主要考查利用诱导公式进行化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数f(x)=aex+x,若1<f'(0)<2,则实数a的取值范围是(  )
A.$({0,\frac{1}{e}})$B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知抛物线经过点P(4,-2),则其标准方程是x2=-8y或y2=x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于△ABC,有如下命题:
①若$\frac{tanA}{tanB}=\frac{a^2}{b^2}$,则△ABC一定为等腰三角形;
②若$\frac{{{b^2}+{c^2}-{a^2}}}{{{a^2}+{c^2}-{b^2}}}=\frac{b^2}{a^2}$,则△ABC一定为等腰三角形;
③若sin2A+cos2B=1,则△ABC一定为等腰三角形;
④若sin2A+sin2B+cos2C<1,则△ABC一定为钝角三角形
其中错误命题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知关于x的方程$2{x^2}-({\sqrt{3}+1})x+m=0$的两个根为sinθ,cosθ,θ∈(0,2π).
(1)求$\frac{sinθ}{1-cosθ}+\frac{cosθ}{1-tanθ}$的值;
(2)求m的值;
(3)求方程的两个根及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$tan(α+β)=\frac{2}{5}$,$tanβ=\frac{1}{3}$,则$tan(α-\frac{π}{4})$的值为(  )
A.$\frac{8}{9}$B.-$\frac{8}{9}$C.$\frac{1}{17}$D.$\frac{16}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某种产品的年销售量y与该年广告费用支出x有关,现收集了4组观测数据列于下表:
x(万元)1456
y(万元)30406050
现确定以广告费用支出x为解释变量,销售量y为预报变量对这两个变量进行统计分析.
(1)已知这两个变量满足线性相关关系,试建立y与x之间的回归方程;
(2)假如2014年广告费用支出为10万元,请根据你得到的模型,预测该年的销售量y.
(3)根据公式R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$,计算相关指数R2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,a1≠0,常数λ>0,且λa1an=S1+Sn对一切正整数n都成立.
(1)求数列{an}的通项公式;
(2)设a1>0,λ=100,当n为何值时,数列$\{lg\frac{1}{a_n}\}$的前n项和最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.通过随机询问200名性别不同的大学生是否爱好踢毽子运动,计算得到统计量K2的观测值k≈4.892,参照附表,得到的正确结论是(  )
P(K2≥k)0.100.050.025
k2.7063.8415.024
A.有97.5%以上的把握认为“爱好该项运动与性别有关”
B.有97.5%以上的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”

查看答案和解析>>

同步练习册答案