精英家教网 > 高中数学 > 题目详情
已知实数m使x2-4mx+2m+30>0对一切x∈R成立,
(1)求实数m的范围D;
(2)求f(m)=(m+3)(1+|m-1|)(m∈D)的值域.
(1)若x2-4mx+2m+30>0对一切x∈R成立,
则△=(-4m)2-4(2m+30)<0
解得-
5
2
<m<3
即D=(-
5
2
,3)
(2)当m∈(-
5
2
,1]时,f(m)=(m+3)(1+|m-1|)=(m+3)(2-m)=-m2-m+6=-(m+
1
2
2+
25
4
∈(
1
4
25
4
]
当m∈(1,3)时,f(m)=(m+3)(1+|m-1|)=(m+3)m=m2+3m=(m+
3
2
2-
9
4
∈(4,18)
故f(m)=(m+3)(1+|m-1|)(m∈D)的值域为(
1
4
,18)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+c
ax+b
为奇函数,f(1)<f(3),
且不等式0≤f(x)≤
3
2
的解集是{x|-2≤x≤-1或2≤x≤4}.
(1)求a,b,c的值;
(2)是否存在实数m使不等式f(-2+sinθ)<-m2+
3
2
对一切θ∈R成立?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+(y-2)2=25,直线L:(2m+1)x+(m+1)y-7m-4=0(m∈R)
(1)证明:无论m取什么实数,L与圆C恒交于两点.
(2)已知直线L与圆D:(x+1)2+(y-5)2=R2(R>0)相切,且使R最大,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+c
ax+b
为奇函数,f(1)<f(3),且不等式0≤f(x)≤
3
2
的解集是[-2,-1]∪[2,4]
(1)求a,b,c.
(2)是否存在实数m使不等式f(-2+sinθ)≤m2+
3
2
对一切θ∈R成立?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.
(1)已知函数f(x)=-x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a的取值范围;
(2)已知 T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围;
(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.
(Ⅰ)已知当x∈[0,4]时,函数f(x)=x2-4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围;
(Ⅱ)是否存在实数k,使函数f(x)=coskx是R上的周期为T的T级类周期函数,若存在,求出实数k和T的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
x2+c
ax+b
为奇函数,f(1)<f(3),
且不等式0≤f(x)≤
3
2
的解集是{x|-2≤x≤-1或2≤x≤4}.
(1)求a,b,c的值;
(2)是否存在实数m使不等式f(-2+sinθ)<-m2+
3
2
对一切θ∈R成立?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案