精英家教网 > 高中数学 > 题目详情
给定实数a(a≠
12
),设函数f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的导数f′(x)的图象为C1,C1关于直线y=x对称的图象记为C2
(Ⅰ)求函数y=f′(x)的单调区间;
(Ⅱ)对于所有整数a(a≠-2),C1与C2是否存在纵坐标和横坐标都是整数的公共点?若存在,请求出公共点的坐标;若不若存在,请说明理由.
分析:(1)首先求出函数的导数,然后再求出导数函数的导数,即函数的二阶导数,并由此判断函数导数的单调区间;
(2)利用根的存在性定理进行计算.
解答:解:(Ⅰ)设g(x)=f′(x)=2+
1-2a
x+a
=
2x+1
x+a

则g′(x)=
2a-1
(x+a)2

当a≥
1
2
时,函数y=f′(x)在区间(-∞,-a]、(-a,+∞)上单调递增,
当a<
1
2
时,函数y=f′(x)在区间(-∞,-a]、(-a,+∞)上单调递减,
∴函数y=f′(x)的单调区间是(-∞,-a]、(-a,+∞).
(Ⅱ)易知C2对应的函数为y=
1-ax
x-2

2x+1
x+a
=
1-ax
x-2

化简可得(a+2)[x2+(a-2)x-1]=0,
∵a≠-2,
∴依题意知x2+(a-2)x-1=0的两根均为整数,
由x2+(a-2)x-1=0,
a=
1-x2
x
+2=2+
1
x
-x

1
x
∈Z

∴x=±1
∴a=2,
∴纵坐标和横坐标都是整数的公共点是(1,1)与(-1,-1).
点评:掌握函数求导的方法以及单调区间的判断,熟悉根的存在性定理及其运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个判断:
①定义在R上的奇函数f(x),当x>0时f(x)=x2+2,则函数f(x)的值域为{y|y≥2或y≤-2};
②若不等式x3+x2+a<0对一切x∈[0,2]恒成立,则实数a的取值范围是{a|a<-12};
③当f(x)=log3x时,对于函数f(x)定义域中任意的x1,x2(x1≠x2)都有f(
x1+x2
2
)<
f(x1)+f(x2)
2

④设g(x)表示不超过t>0的最大整数,如:[2]=2,[1.25]=1,对于给定的n∈N+,定义
C
x
n
=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),则当x∈[
3
2
,2)时函数
C
x
8
的值域是(4,
16
3
]

上述判断中正确的结论的序号是
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知常数a≠0,数列{an}的前n项和为Sn,a1=1,且an=
Sn
n
+a(n-1)

(1)求证:数列{an}为等差数列;
(2)若bn=3n+(-1)nan,且数列{bn}是单调递增数列,求实数a的取值范围;
(3)若a=
1
2
,数列{cn}满足:cn=
an
an+2011
,对于任意给定的正整数k,是否存在p,q∈N*,使ck=cp•cq?若存在,求p,q的值(只要写出一组即可);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)设函数f(x)=lg
1+mxa
m
,其中a∈R,m是给定的正整数,且m≥2.如果不等式f(x)>(x-1)lgm在区间[1,+∞)上有解,则实数a的取值范围是
a>
1
2
a>
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(1)求证:y1+y2为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,n≥2令an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.
(3)对于给定的实数a(a>1)是否存在这样的数列{an},使得f(an)=log3(
3
an+1)
,且a1=
1
a-1
?若存在,求出a满足的条件;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案