【题目】在直三棱柱中,、、、分别为中点,.
(1)求证:平面.
(2)求二面角的余弦值.
【答案】(1)见解析;(2)
【解析】
(1)取中点,连接,根据直棱柱的特征,易知,再由、分别为的中点,根据中位线定理,可得,得到四边形为平行四边形,再利用线面平行的判定定理证明.
(2)取的中点,连接,以为原点,、、分别为、、轴建立空间直角坐标系,则.,再分别求得平面和平面的一个法向量,利用面面角的向量公式
求解.
(1)证明:如图所示:
取中点,连接,易知,
、分别为的中点,∴,
∴.
故四边形为平行四边形,∴,
∵平面,平面,
平面.
(2)取的中点,连接,以为原点,、、分别为、、轴建立如图所示的空间直角坐标系,
如图所示:
则.
∴,
设平面的法向量为,
则,
即,取,得,
易知平面的一个法向量为,
∴,
∴二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】在中,满足:,M是的中点.
(1)若,求向量与向量的夹角的余弦值;
(2)若O是线段上任意一点,且,求的最小值:
(3)若点P是内一点,且,,,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是( )
A.命题“若,则”的逆命题为真命题
B.若为假命题,则均为假命题
C.若为假命题,则为真命题
D.命题“若两个平面向量满足,则不共线”的否命题是真命题.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地拟在一个U形水面PABQ(∠A=∠B=90°)上修一条堤坝(E在AP上,N在BQ上),围出一个封闭区域EABN,用以种植水生植物.为了美观起见,决定从AB上点M处分别向点E,N拉2条分隔线ME,MN,将所围区域分成3个部分(如图),每部分种植不同的水生植物.已知AB=a,EM=BM,∠MEN=90°,设所拉分隔线总长度为l.
(1)设∠AME=2θ,求用θ表示的l函数表达式,并写出定义域;
(2)求l的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若满足,则称为函数的一阶不动点,若满足,则称为函数的二阶不动点,若满足,且,则称为函数的二阶周期点.
(1)设.
①当时,求函数的二阶不动点,并判断它是否是函数数的二阶周期点;
②已知函数存在二阶周期点,求k的值;
(2)若对任意实数b,函数都存在二阶周期点,求实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是正方形,且,平面PCD⊥平面ABCD,,点E为线段PC的中点,点F是线段AB上的一个动点.
(1)求证:平面平面PBC;
(2)设二面角的平面角为,试判断在线段AB上是否存在这样的点F,使得,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com