(本小题满分12分)
设点到直线的距离与它到定点的距离之比为,并记点的轨迹为曲线.
(Ⅰ)求曲线的方程;
(Ⅱ)设,过点的直线与曲线相交于两点,当线段的中点落在由四点构成的四边形内(包括边界)时,求直线斜率的取值范围.
(Ⅰ);(Ⅱ)
解析试题分析:(Ⅰ)有题意, ………………2分
整理得,所以曲线的方程为………………4分
(Ⅱ)显然直线的斜率存在,所以可设直线的方程为.
设点的坐标分别为
线段的中点为,
由
得
由解得.…(1) …………7分
由韦达定理得,于是
=, ……………8分
因为,所以点不可能在轴的右边,
又直线,方程分别为
所以点在正方形内(包括边界)的充要条件为
即 亦即 ………………10分
解得,……………(2)
由(1)(2)知,直线斜率的取值范围是………………12分
考点:本题考查了圆锥曲线方程的求法及直线与圆锥曲线的位置关系
点评:椭圆的概念和性质,仍将是今后命题的热点,定值、最值、范围问题将有所加强;利用直线、弦长、圆锥曲线三者的关系组成的各类试题是解析几何中长盛不衰的主题,其中求解与相交弦有关的综合题仍是今后命题的重点;与其它知识的交汇(如向量、不等式)命题将是今后高考命题的一个新的重点、热点.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系O中,直线与抛物线=2相交于A、B两点。
(1)求证:命题“如果直线过点T(3,0),那么=3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆 经过点其离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆相交于A、B两点,以线段为邻边作平行四边形OAPB,其中顶点P在椭圆上,为坐标原点.求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;
(3)过原点的直线交椭圆于点,求面积的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题12分)已知椭圆的左、右焦点分别为F1、F2,其中F2也是抛物线的焦点,M是C1与C2在第一象限的交点,且
(I)求椭圆C1的方程; (II)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线上,求直线AC的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线顶点在原点,焦点在x轴上,又知此抛物线上一点A(4,m)到焦点的距离为6.
(1)求此抛物线的方程;
(2)若此抛物线方程与直线相交于不同的两点A、B,且AB中点横坐标为2,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分15分)
在平面内,已知椭圆的两个焦点为,椭圆的离心率为 ,点是椭圆上任意一点, 且,
(1)求椭圆的标准方程;
(2)以椭圆的上顶点为直角顶点作椭圆的内接等腰直角三角形,这样的等腰直角三角形是否存在?若存在请说明有几个、并求出直角边所在直线方程?若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com